4.已知{an}為等差數(shù)列,若a1+a2+a3=$\frac{π}{2}$,a7+a8+a9=π,則cosa5的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

分析 利用等差的性質(zhì),a1+a2+a3,a4+a5+a6,a7+a8+a9成等差,從而可得a4+a5+a6的值,根據(jù)等差中項(xiàng)可得a5的值

解答 解:由題意,{an}為等差數(shù)列,則a1+a2+a3,a4+a5+a6,a7+a8+a9成等差,
∴a4+a5+a6=$\frac{3π}{4}$,
那么3a5=$\frac{3π}{4}$,
a5=$\frac{π}{4}$,
cosa5=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$
故選D

點(diǎn)評(píng) 本題考查了等差數(shù)列的前n項(xiàng)和的性質(zhì)的利用,三角函數(shù)值的計(jì)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)將參數(shù)方程轉(zhuǎn)化為普通方程:$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.({θ為參數(shù)})$
(2)求橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的參數(shù)方程:
①設(shè)x=3cosφ,φ為參數(shù);
②設(shè)y=2t,t為參數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知角α的終邊經(jīng)過點(diǎn)P(-4a,3a)(a≠0),求sinα+cosα-tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.正四棱柱ABCD-A1B1C1D1中,底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,則B1點(diǎn)到平面AD1C的距離為( 。
A.$\frac{8}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)列{an}中,已知對(duì)任意自然數(shù)n,a1+a2+a3+…+an=2n,則a12+a22+a32+…+an2=( 。
A.$\frac{1}{3}$(4n-1)B.$\frac{1}{3}$(2n-1)C.4n-1D.$\frac{1}{3}$(4n+8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義min{a,b}=$\left\{\begin{array}{l}{a,(a≤b)}\\{b,(a>b)}\end{array}\right.$,若函數(shù)f(x)=min{sin(2x+$\frac{π}{6}$),cos2x},且f(x)在區(qū)間[s,t]上的值域?yàn)閇-1,$\frac{1}{2}$],則區(qū)間[s.t]長(zhǎng)度的最大值為( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在極坐標(biāo)系中,曲線C:ρ=2cosθ,l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$.
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)O為極點(diǎn),A,B為曲線C上的兩點(diǎn),且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}的前n項(xiàng)和為${S_n}=\frac{{n{a_n}}}{2},{a_2}=2$,則數(shù)列{an}的通項(xiàng)公式是an=2(n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.用秦九韶算法計(jì)算函數(shù)f(x)=2x5-3x3+2x2+x-3的值,若x=2,則V3的值是12.

查看答案和解析>>

同步練習(xí)冊(cè)答案