分析 (1)利用極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化方法,即可把圓與直線的極坐標(biāo)方程分別化為直角坐標(biāo)方程;
(2)不妨設(shè)A的極角為θ,B的極角為θ+$\frac{π}{3}$,則|OA|+|OB|=2cosθ+2cos(θ+$\frac{π}{3}$)=3cosθ-$\frac{π}{3}$sinθ=2$\frac{π}{3}$cos(θ+$\frac{π}{6}$),利用三角函數(shù)的單調(diào)性即可得出.
解答 解:(1)曲線C:ρ=2cosθ,即ρ2=2cρosθ,直角坐標(biāo)方程為:x2+y2=2x,即(x-1)2+y2=1.
l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$,l的直角坐標(biāo)方程為x+$\sqrt{3}$y-3=0.
(2)不妨設(shè)A的極角為θ,B的極角為θ+$\frac{π}{3}$,
則|OA|+|OB|=2cosθ+2cos(θ+$\frac{π}{3}$)
=3cosθ-$\sqrt{3}$sinθ=2$\sqrt{3}$cos(θ+$\frac{π}{6}$),
當(dāng)θ=-$\frac{π}{6}$時(shí),|OA|+|OB|取得最大值2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了把圓與直線的極坐標(biāo)方程分別化為直角坐標(biāo)方程、極坐標(biāo)方程的應(yīng)用、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com