【題目】某校后勤處為跟蹤調查該校餐廳的當月的服務質量,兌現(xiàn)獎懲,從就餐的學生中隨機抽出100位學生對餐廳服務質量打分(5分制),得到如圖柱狀圖.
(Ⅰ)從樣本中任意選取2名學生,求恰好有1名學生的打分不低于4分的概率;
(Ⅱ)若以這100人打分的頻率作為概率,在該校隨機選取2名學生進行打分(學生打分之間相互獨立)記X表示兩人打分之和,求X的分布列和E(X).
(Ⅲ)根據(jù)(Ⅱ)的計算結果,后勤處對餐廳服務質量情況定為三個等級,并制定了對餐廳相應的獎懲方案,如表所示,設當月獎金為Y(單位:元),求E(Y).
服務質量評分X | X≤5 | 6≤X≤8 | X≥9 |
等級 | 不好 | 較好 | 優(yōu)良 |
獎懲標準(元) | ﹣1000 | 2000 | 3000 |
【答案】解:(Ⅰ)設“從樣本中任意選取2名學生,求恰好有一名學生的打分不低于4分”為事件A, 則P(A)= = ≈0.51;
(Ⅱ)X的可能取值為4,5,6,7,8,9,10;
則P(X=4)=0.2×0.2=0.04,
P(X=5)=2×0.2×0.3=0.12,
P(X=6)=2×0.2×0.3+0.3×0.3=0.21,
P(X=7)=2×0.3×0.3+2×0.2×0.2=0.26,
P(X=8)=2×0.2×0.3+0.3×0.3=0.21,
P(X=9)=2×0.2×0.3=0.12,
P(X=10)=0.2×0.2=0.04;
X的分布列如下:
X | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
P | 0.04 | 0.12 | 0.21 | 0.26 | 0.21 | 0.12 | 0.04 |
X的數(shù)學期望為E(X)=4×0.04+5×0.12+6×0.21+7×0.26+8×0.21+9×0.12+10×0.04=7;
(Ⅲ)Y的分布列為
Y | ﹣1000 | 2000 | 3000 |
P | 0.16 | 0.68 | 0.16 |
Y的數(shù)學期望為E(Y)=﹣1000×0.16+2000×0.68+3000×0.16=1680
【解析】(Ⅰ)計算“從樣本中任意選取2名學生,恰好有一名學生的打分不低于4分”的概率值;(Ⅱ)由X的可能取值,計算對應的概率值,寫出X的分布列,計算數(shù)學期望;(Ⅲ)根據(jù)表格寫出Y的分布列,計算對應的數(shù)學期望值.
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關知識可以得到問題的答案,需要掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2cosθ. (Ⅰ)把C1的參數(shù)方程化為極坐標方程;
(Ⅱ)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的左、右焦點為F1 , F2 , 設點F1 , F2與橢圓短軸的一個端點構成斜邊長為4的直角三角形.
(1)求橢圓C的標準方程;
(2)設A,B,P為橢圓C上三點,滿足 = + ,記線段AB中點Q的軌跡為E,若直線l:y=x+1與軌跡E交于M,N兩點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】非零向量 , 的夾角為 ,且滿足| |=λ| |(λ>0),向量組 , , 由一個 和兩個 排列而成,向量組 , , 由兩個 和一個 排列而成,若 + + 所有可能值中的最小值為4 2 , 則λ= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m.
(Ⅰ)作出函數(shù)f(x)的圖象;
(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )上單調,則ω的最大值為( )
A.11
B.9
C.7
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 上兩個不同的點A,B關于直線y=mx+ 對稱.
(1)求實數(shù)m的取值范圍;
(2)求△AOB面積的最大值(O為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(Ⅰ)求橢圓C的標準方程和長軸長;
(Ⅱ)設F為橢圓C的左焦點,P為直線x=﹣3上任意一點,過點F作直線PF的垂線交橢圓C于M,N,記d1 , d2分別為點M和N到直線OP的距離,證明:d1=d2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)圖象如圖,f'(x)是f(x)的導函數(shù),則下列數(shù)值排序正確的是( )
A.0<f'(2)<f'(3)<f(3)﹣f(2)
B.0<f'(3)<f'(2)<f(3)﹣f(2)
C.0<f'(3)<f(3)﹣f(2)<f'(2)
D.0<f(3)﹣f(2)<f'(2)<f'(3)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com