已知函數(shù),
(1)當且時,證明:對,;
(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.
(1),,解得,當時,,單調(diào)遞增;當時,,單調(diào)遞減,所以在處取最大值,即,,即
(2)(3)數(shù)列無上界
解析試題分析:⑴當且時,設(shè),,……1分,解得。
當時,,單調(diào)遞增;當時,,單調(diào)遞減,所以在處取最大值,即,,即
(2)若,=
所以
因為函數(shù)存在單調(diào)遞減區(qū)間,所以在上有解
所以在上有解
所以在上有解,即使得
令,則,研究,當時,
所以
(3)數(shù)列無上界
,設(shè),,由⑴得,,所以,,取為任意一個不小于的自然數(shù),則,數(shù)列無上界。
考點:函數(shù)單調(diào)性最值與不等式與函數(shù)的轉(zhuǎn)化
點評:不等式恒成立問題常轉(zhuǎn)化為求函數(shù)最值問題,第二問將函數(shù)存在減區(qū)間首先轉(zhuǎn)化為導(dǎo)數(shù)小于零有解,進而轉(zhuǎn)化為求函數(shù)最值,通過本題要加強不等式與函數(shù)的互相轉(zhuǎn)化的思維思路的培養(yǎng)與訓練
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,函數(shù)恒成立,求實數(shù)的取值范圍;
(3)設(shè)正實數(shù)滿足.求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)滿足,其中a>0,a≠1.
(1)對于函數(shù),當x∈(-1,1)時,f(1-m)+f(1-m2)<0,求實數(shù)m的取值集合;
(2)當x∈(-∞,2)時,的值為負數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數(shù)k的最小值.]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)試問該函數(shù)能否在處取到極值?若有可能,求實數(shù)的值;否則說明理由;
(2)若該函數(shù)在區(qū)間上為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com