15.以橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一動點(diǎn)M為圓心,1為半徑作圓M,過原點(diǎn)O作圓M的兩條切線,A,B為切點(diǎn),若∠AOB=θ,θ∈[$\frac{π}{3}$,$\frac{π}{2}$],則橢圓C的離心率為(  )
A.$\frac{\sqrt{5}}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{3}$

分析 連接OA,OB,OM,則∠AOM∈[$\frac{π}{6}$,$\frac{π}{4}$],由AM=r=1,得OM∈[$\sqrt{2}$,2],即a=2,b=$\sqrt{2}$.即可得橢圓C的離心率e

解答 解:如圖連接OA,OB,OM,則∠AOM∈[$\frac{π}{6}$,$\frac{π}{4}$]
∵AM=r=1,∴OM∈[$\sqrt{2}$,2]
又因?yàn)閎≤OM≤a,∴a=2,b=$\sqrt{2}$.
橢圓C的離心率e=$\frac{c}{a}=\frac{\sqrt{2}}{2}$,
故選:C

點(diǎn)評 本題考查了橢圓的離心率,轉(zhuǎn)化思想是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,AD為BC邊上的高,已知∠BAC=$\frac{3π}{4}$,AC=1,AD=$\frac{BC}{6}$,則AB+$\frac{1}{AB}$的值為( 。
A.2B.2$\sqrt{2}$C.3D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{ln(1+x)}{x}$.
(1)試判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并說明理由;
(2)若函數(shù)f(x)在其定義域內(nèi)恒有f(x)<$\frac{1-ax}{1+x}$成立,試求a的所有可能的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積為“三斜公式”,設(shè)△ABC三個內(nèi)角A,B,C所對的邊分別為a,b,c,面積為S,則“三斜求積”公式為:S=$\sqrt{\frac{1}{4}[{a}^{2}{c}^{2}-(\frac{{a}^{2}+{c}^{2}-^{2}}{2})]}$,若a2sinC=4sinA,(a+c)2=12+b2,則用“三斜求積”公式求得△ABC的面積為( 。
A.$\sqrt{3}$B.2C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義在(0,+∞)的函數(shù)f(x)的導(dǎo)函數(shù)f'(x)滿足x3f'(x)+8>0,且f(2)=2,則不等式$f({e^x})<\frac{4}{{{e^{2x}}}}+1$的解集為(  )
A.(-∞,2)B.(-∞,ln2)C.(0,2)D.(0,ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四邊形ABEF是正方形.將正方形ABEF沿AB折起到四邊形ABE1F1的位置,使平面ABE1F1⊥平面ABCD,M為AF1的中點(diǎn),如圖2.

(I)求證:AC⊥BM;
(Ⅱ)求平面CE1M與平面ABE1F1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“a2=1”是“函數(shù)$f(x)=lg({\frac{2}{1-x}+a})$為奇函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓W:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0)的一個焦點(diǎn)坐標(biāo)為$(\sqrt{3},0)$.
(Ⅰ)求橢圓W的方程和離心率;
(Ⅱ)若橢圓W與y軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的上方),M是橢圓上異于A,B的任意一點(diǎn),過點(diǎn)M作MN⊥y軸于N,E為線段MN的中點(diǎn),直線AE與直線y=-1交于點(diǎn)C,G為線段BC的中點(diǎn),O為坐標(biāo)原點(diǎn).求∠OEG的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知k∈Z,關(guān)于x的不等式k(x+1)>$\frac{2x}{e^x}$在(0,+∞)上恒成立,則k的最小值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案