分析 根據(jù)函數(shù)單調(diào)性的性質(zhì),分析出函數(shù)的單調(diào)性,進(jìn)而求出M,N,相加可得答案.
解答 解:函數(shù)f(x)=$\frac{201{7}^{x+1}+2016}{201{7}^{x}+1}$+2016sinx=2016sinx+2017-$\frac{1}{201{7}^{x}+1}$,
當(dāng)x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時,y=sinx為增函數(shù),y=$\frac{1}{201{7}^{x}+1}$為減函數(shù),
故f(x),x∈[-$\frac{π}{2}$,$\frac{π}{2}$]為增函數(shù),
當(dāng)x=-$\frac{π}{2}$時,函數(shù)f(x)取最小值N=-2016+2017-$\frac{1}{201{7}^{-\frac{π}{2}}+1}$=1-$\frac{201{7}^{\frac{π}{2}}}{201{7}^{\frac{π}{2}}+1}$,
當(dāng)x=$\frac{π}{2}$時,函數(shù)f(x)取最大值M=2016+2017-$\frac{1}{201{7}^{\frac{π}{2}}+1}$=4033-$\frac{1}{201{7}^{\frac{π}{2}}+1}$,
故M+N=4033,
故答案為:4033.
點評 本題考查的知識點是函數(shù)的最值及其幾何意義,函數(shù)的單調(diào)性,函數(shù)求值,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{4}{3}$,$\frac{2}{3}$] | B. | [-2,4] | C. | [0,2] | D. | [-8,10] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com