11.已知多面體ABCDEF中,四邊形ABCD為平行四邊形,AD⊥平面AEC,且$AC=\sqrt{2}$,AE=EC=1,AD=2EF,EF∥AD.
(Ⅰ)求證:平面FCE⊥平面ADE;
(Ⅱ)若AD=2,求多面體ABCDEF的體積.

分析 (Ⅰ)證明AD⊥EC.AE⊥EC.推出EC⊥平面ADE,然后證明平面FCE⊥平面ADE.
(Ⅱ)說明AE⊥平面BCEF,通過VABCDEF=VA-BCEF+VD-AEC,轉(zhuǎn)化求解即可.

解答 (Ⅰ)證明:∵AD⊥平面AEC,EC?平面AEC,∴AD⊥EC.
又$AC=\sqrt{2}$,AE=EC=1,∴AC2=AE2+EC2,∴AE⊥EC.
又AE∩AD=A,∴EC⊥平面ADE.∵EC?平面FCE,
∴平面FCE⊥平面ADE.
(Ⅱ)解:易知AE⊥AD,又EF∥AD,∴AE⊥EF,由(Ⅰ)知AE⊥EC,
又EF∩EC=E,∴AE⊥平面BCEF,
又AD=2,∴EF=1.
∴VABCDEF=VA-BCEF+VD-AEC
=$\frac{1}{3}×\frac{1}{2}×({EF+BC})$×EC×EA+$\frac{1}{3}×\frac{1}{2}×AE$×EC×AD
=$\frac{1}{3}×\frac{1}{2}×({1+2})$×$1×1+\frac{1}{3}×\frac{1}{2}$×1×1×2
=$\frac{5}{6}$.

點評 本題考查平面與平面垂直的判定定理的應用,幾何體的體積的求法,考查空間想象能力以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)$f(x)={a^2}x-\frac{1}{x}-2aln(ax)+\frac{1}{2}$,f'(x)為其導函數(shù).
(1)設$g(x)=f(x)+\frac{1}{x}$,求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若a>0,設A(x1,f(x1)),B(x2,f(x2))為函數(shù)f(x)圖象上不同的兩點,且滿足f(x1)+f(x2)=1,設線段AB中點的橫坐標為x0,證明:ax0>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}是首項為a1,公差為d的等差數(shù)列,記其前n項和為Sn,試用a1,d,n表示Sn,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知F為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦點,l1,l2為C的兩條漸近線,點A在l1上,且FA⊥l1,點B在l2上,且FB∥l1,若$|{FA}|=\frac{4}{5}|{FB}|$,則雙曲線C的離心率為( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$D.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y≥3\\ x+2y≥6\\ x≤8\end{array}\right.$則z=x-2y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={-1,0,1,2,3,4,5},B={b|b=n2-1,n∈Z},則A∩B=(  )
A.{-1,3}B.{0,3}C.{-1,0,3}D.{-1,0,3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某中學為了解高中入學新生的身高情況,從高一年級學生中按分層抽樣共抽取了50名學生的身高數(shù)據(jù),分組統(tǒng)計后得到了這50名學生身高的頻數(shù)分布表:
 身高(cm)分組[145,155)[155,165)[165,175)[175,185]
 男生頻數(shù) 1 5 12 4
 女生頻數(shù) 7 15 4 2
(Ⅰ)在答題卡上作出這50名學生身高的頻率分布直方圖;
(Ⅱ)估計這50名學生身高的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)現(xiàn)從身高在[175,185]這6名學生中隨機抽取3名,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量y(單位:千克)與該地當日最低氣溫x(單位:°C)的數(shù)據(jù),如下表:
x258911
y1210887
(1)求出y與x的回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)判斷y與x之間是正相關(guān)還是負相關(guān);若該地1月份某天的最低氣溫為6°C,請用所求回歸方程預測該店當日的銷售量;
(3)設該地1月份的日最低氣溫X~N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline x$,σ2近似為樣本方差s2,求P(3.8<X<13.4).
附:①回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中,$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知sinα-cosα=$\frac{1}{3}$,則cos($\frac{π}{2}$-2α)=( 。
A.-$\frac{8}{9}$B.$\frac{2}{3}$C.$\frac{8}{9}$D.$\frac{\sqrt{17}}{9}$

查看答案和解析>>

同步練習冊答案