【題目】若F1 , F2是橢圓C: + =1(0<m<9)的兩個(gè)焦點(diǎn),橢圓上存在一點(diǎn)P,滿足以橢圓短軸為直徑的圓與線段PF1相切于該線段的中點(diǎn)M. (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)(0, )的直線l與橢圓C交于兩點(diǎn)A、B,線段AB的中垂線l1交x軸于點(diǎn)N,R是線段AN的中點(diǎn),求直線l1與直線BR的交點(diǎn)E的軌跡方程.
【答案】解:(Ⅰ)∵0<m<9,∴a=3,b= ,不妨設(shè)橢圓的下焦點(diǎn)F1 , 設(shè)線段PF1的中點(diǎn)為:M; 由題意,OM⊥PF1 , 又OM=b,OM是△PF1F2的中位線,
∴|PF2|=2b,
由橢圓定義,|PF1|=2a﹣2b=6﹣2b.∴ =3﹣b,
在Rt△OMF1中: ,
∴c2=b2+(3﹣b)2 , 又c2=a2﹣b2=9﹣b2 . ,
∴b2+(3﹣b)2=9﹣b2交點(diǎn)b=0(舍去)或b=2,∴m=b2=4.
∴橢圓C的方程: + =1.
(Ⅱ)由(Ⅰ)橢圓C的方程: + =1.
上焦點(diǎn)坐標(biāo)(0, ).直線l的斜率k必存在.
設(shè)A(x1 , y1)B(x2 , y2),弦AB的中點(diǎn)Q(x0 , y0),
由 ,可得4(y1+y2)(y1﹣y2)=﹣9(x1+x2)(x1﹣x2),
∴k= =﹣ =﹣ (y0≠0)
①當(dāng)x0≠0時(shí),k=kAB= ∴k=- = 9x02+4y02﹣4 y0=0,
又l1:y﹣y0= ,∴N( ),
連結(jié)BN,則E為△ABN的重心,設(shè)E(x,y),
則 ,
∴ 代入9x02+4y02﹣4 y0=0可得:48x2+3y2﹣2 ,(y≠0).
②當(dāng)x0=0時(shí),l:y= ,N(0,0),E(0, )也適合上式,
綜上所述,點(diǎn)E的軌跡方程為:48x2+3y2﹣2 ,(y≠0).
【解析】(Ⅰ)求出a=3,b= ,設(shè)橢圓的下焦點(diǎn)F1 , 設(shè)線段PF1的中點(diǎn)為:M;由題意,OM⊥PF1 , 又OM=b,OM是△PF1F2的中位線,由橢圓定義,在Rt△OMF1中的勾股定理,求出b=2,得到m.然后求解橢圓C的方程. (Ⅱ)上焦點(diǎn)坐標(biāo)(0, ).直線l的斜率k必存在.設(shè)A(x1 , y1)B(x2 , y2),弦AB的中點(diǎn)Q(x0 , y0),利用平方差法得到AB的斜率,通過①當(dāng)x0≠0時(shí),k=kAB= ,推出9x02+4y02﹣4 y0=0,連結(jié)BN,則E為△ABN的重心,設(shè)E(x,y),利用重心坐標(biāo)公式,推出 代入9x02+4y02﹣4 y0=0軌跡方程②當(dāng)x0=0時(shí),驗(yàn)證即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y滿足線性約束條件 ,若z=x+4y的最大值與最小值之差為5,則實(shí)數(shù)λ的值為( )
A.3
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)是( ) ①命題“x∈R,x3﹣x2+1≤0”的否定是“ ;
②“ ”是“三個(gè)數(shù)a,b,c成等比數(shù)列”的充要條件;
③“m=﹣1”是“直線mx+(2m﹣1)y+1=0和直線3x+my+2=0垂直”的充要條件:
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M是直線l:x=﹣1上的動(dòng)點(diǎn),點(diǎn)F的坐標(biāo)是(1,0),過M的直線l′與l垂直,并且l′與線段MF的垂直平分線相交于點(diǎn)N (Ⅰ)求點(diǎn)N的軌跡C的方程
(Ⅱ)設(shè)曲線C上的動(dòng)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′,點(diǎn)P的坐標(biāo)為(2,0),直線AP與曲線C的另一個(gè)交點(diǎn)為B(B與A′不重合),直線P′H⊥A′B,垂足為H,是否存在一個(gè)定點(diǎn)Q,使得|QH|為定值?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)唐代詩人王維詩云:“明月松間照,清泉石上流”,這里明月和清泉,都是自然景物,沒有變,形容詞“明”對(duì)“清”,名詞“月”對(duì)“泉”,詞性不變,其余各詞均如此.變化中的不變性質(zhì),在文學(xué)和數(shù)學(xué)中都廣泛存在.比如我們利用幾何畫板軟件作出拋物線C:x2=y的圖象(如圖),過交點(diǎn)F作直線l交C于A、B兩點(diǎn),過A、B分別作C的切線,兩切線交于點(diǎn)P,過點(diǎn)P作x軸的垂線交C于點(diǎn)N,拖動(dòng)點(diǎn)B在C上運(yùn)動(dòng),會(huì)發(fā)現(xiàn) 是一個(gè)定值,該定值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年微信用戶數(shù)量統(tǒng)計(jì)顯示,微信注冊(cè)用戶數(shù)量已經(jīng)突破9.27億.微信用戶平均年齡只有26歲,97.7%的用戶在50歲以下,86.2%的用戶在18﹣36歲之間.為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從北京市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量 | 頻數(shù) | 頻率 |
0至5個(gè) | 0 | 0 |
6至10個(gè) | 30 | 0.3 |
11至15個(gè) | 30 | 0.3 |
16至20個(gè) | a | c |
20個(gè)以上 | 5 | b |
合計(jì) | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)若從這100位同學(xué)中隨機(jī)抽取2人,求這2人中恰有1人微信群個(gè)數(shù)超過15個(gè)的概率;
(Ⅲ)以這100個(gè)人的樣本數(shù)據(jù)估計(jì)北京市的總體數(shù)據(jù)且以頻率估計(jì)概率,若從全市大學(xué)生中隨機(jī)抽取3人,記X表示抽到的是微信群個(gè)數(shù)超過15個(gè)的人數(shù),求X的分布列和數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)D為不等式組 表示的平面區(qū)域,對(duì)于區(qū)域D內(nèi)除原點(diǎn)外的任一點(diǎn)A(x,y),則2x+y的最大值是 , 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),P(x,y)為函數(shù)y=1+lnx圖象上一點(diǎn),記直線OP的斜率k=f(x). (Ⅰ)若函數(shù)f(x)在區(qū)間(m,m+ )(m>0)上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)x≥1時(shí),不等式f(x)≥ 恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對(duì)于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(2, ),則f(4)的值等于 ;
④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是 .
說法錯(cuò)誤的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com