【題目】下列說法正確的個數(shù)是( ) ①命題“x∈R,x3﹣x2+1≤0”的否定是“ ;
②“ ”是“三個數(shù)a,b,c成等比數(shù)列”的充要條件;
③“m=﹣1”是“直線mx+(2m﹣1)y+1=0和直線3x+my+2=0垂直”的充要條件:
A.0
B.1
C.2
D.3

【答案】B
【解析】解:①命題“x∈R,x3﹣x2+1≤0”的否定是“x0∈R, >0,故①正確; ②由 ,不一定有a,b,c成等比數(shù)列,如a=0,b=0,c=1,
反之,三個數(shù)a,b,c成等比數(shù)列,不一定有 ,如a=1,b=﹣2,c=4.
∴“ ”是“三個數(shù)a,b,c成等比數(shù)列”的既不充分也不必要的條件,故②錯誤;
③當m=﹣1時,兩直線分別化為﹣x﹣3y+1=0和3x﹣y+2=0,兩直線垂直,
反之,由兩直線垂直,得3m+m(2m﹣1)=0,解得m=0或m=﹣1.
∴“m=﹣1”是“直線mx+(2m﹣1)y+1=0和直線3x+my+2=0垂直”的充分不必要條件,故③錯誤.
∴正確的命題個數(shù)是1個.
故選:B.
【考點精析】通過靈活運用命題的真假判斷與應(yīng)用,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應(yīng)等乙半小時,而乙還有其他安排,若乙早到則不需等待,則甲、乙兩人能見面的概率(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標原點,F(xiàn)是雙曲線 的左焦點,A,B分別為Γ的左、右頂點,P為Γ上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E,直線 BM與y軸交于點N,若|OE|=2|ON|,則 Γ的離心率為(
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Γ: +y2=1(a>1)的左焦點為F1 , 右頂點為A1 , 上頂點為B1 , 過F1 , A1 , B1三點的圓P的圓心坐標為( , ).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=kx+m(k,m為常數(shù),k≠0)與橢圓Γ交于不同的兩點M和N.
(i)當直線l過E(1,0),且 +2 = 時,求直線l的方程;
(ii)當坐標原點O到直線l的距離為 時,求△MON面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,CA=CB=AA1 , ∠BAA1=∠BAC=60°,點O是線段AB的中點. (Ⅰ)證明:BC1∥平面OA1C;
(Ⅱ)若AB=2,A1C= ,求二面角A﹣BC﹣A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=2,nan+1=2(n+1)an
(1)記bn= ,求數(shù)列{bn}的通項bn;
(2)求通項an及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三角形△ABC內(nèi)任取一點P,則點P到A,B,C的距離都大于該三角形邊長一半的概率為(
A.1﹣
B.1﹣
C.1﹣
D.1﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若F1 , F2是橢圓C: + =1(0<m<9)的兩個焦點,橢圓上存在一點P,滿足以橢圓短軸為直徑的圓與線段PF1相切于該線段的中點M. (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0, )的直線l與橢圓C交于兩點A、B,線段AB的中垂線l1交x軸于點N,R是線段AN的中點,求直線l1與直線BR的交點E的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 為常數(shù)), ,且當x1 , x2∈[1,4]時,總有f(x1)≤g(x2),則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案