【題目】已知拋物線的焦點為,點在拋物線上,且滿足.

1)求拋物線的方程;

2)過拋物線上的任意一點作拋物線的切線,交拋物線的準線于點.軸上是否存在一個定點,使以為直徑的圓恒過.若存在,求出的坐標,若不存在,則說明理由.

【答案】(1)(2)存在一個定點,使以為直徑的圓恒過

【解析】

1)利用拋物線的定義,結合,求得,由此求得拋物線的方程.

2)首先假設存在一個,使以為直徑的圓恒過.設出切線的方程,利用導數(shù)建立切線斜率的等量關系式,結合,利用向量數(shù)量積的坐標運算列方程,解方程求得點的坐標,由此證得存在點符合題意.

1)由拋物線定義知,又,

,解得,

∴拋物線的方程為.

2)存在一個,使以為直徑的圓恒過.

由(1)得拋物線,準線方程為.

依題意切線斜率一定存在且不為0,設切線方程為.

設定點為,,,

,∴切線斜率,又,

,∴,解得.

為直徑的圓恒過定點等價于.

,.

恒成立.

,解得,存在一個定點,使以為直徑的圓恒過.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問某地100名高中學生在選擇座位時是否挑同桌,得到如下列聯(lián)表:

男生

女生

合計

挑同桌

30

40

70

不挑同桌

20

10

30

總計

50

50

100

從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現(xiàn)從這5人中隨機選取3人做深度采訪,求這3名學生中至少有2名要挑同桌的概率;

根據(jù)以上列聯(lián)表,是否有以上的把握認為“性別與在選擇座位時是否挑同桌”有關?

下面的臨界值表供參考:

參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時底面的一條棱始終在桌面上(圖、均為容器的縱截面).

1)要使傾斜后容器內的溶液不會溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當時,能實現(xiàn)要求嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數(shù)方程為:t為參數(shù)),直線l與曲線C分別交于兩點.

1)寫出曲線C和直線l的普通方程;

2)若點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為R的函數(shù)y=fx),部分xy的對應關系如表:

x

2

1

0

1

2

3

4

5

y

0

2

3

2

0

1

0

2

1)求f{f[f0)]};

2)數(shù)列{xn}滿足x1=2,且對任意nN*,點(xn,xn+1)都在函數(shù)y=fx)的圖象上,求x1+x2+…+x4n;

3)若y=fx)=Asinωx+φ)+b,其中A0,0ω<π,0φ<π,0b3,求此函數(shù)的解析式,并求f1)+f2)+…+f3n)(nN*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調查機構對全國互聯(lián)網行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網行業(yè)從業(yè)者年齡分布餅狀圖和90后從事互聯(lián)網行業(yè)者崗位分布圖(90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生),則下列結論中不一定正確的是(

整個互聯(lián)網行業(yè)從業(yè)者年齡分布餅狀圖 90后從事互聯(lián)網行業(yè)者崗位分布圖

A.互聯(lián)網行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網行業(yè)中從事技術崗位的人數(shù)90后比80后多

C.互聯(lián)網行業(yè)中從事設計崗位的人數(shù)90后比80前多

D.互聯(lián)網行業(yè)中從事市場崗位的90后人數(shù)不足總人數(shù)的10%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解運動健身減肥的效果,某健身房調查了20名肥胖者,健身之前他們的體重(單位:kg)情況如三維餅圖(1)所示,經過四個月的健身后,他們的體重情況如三維餅圖(2)所示.

對比健身前后,關于這20名肥胖者,下面結論正確的是(

A.他們健身后,體重在區(qū)間內的人增加了2

B.他們健身后,體重在區(qū)間內的人數(shù)沒有改變

C.他們健身后,20人的平均體重大約減少了

D.他們健身后,原來體重在區(qū)間內的肥胖者體重都有減少

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓,圓與圓外切于點,且過點,則圓的標準方程為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的前n組成集合,從集合中任取個數(shù),其所有可能的k個數(shù)的乘積的和為(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),例如:對于數(shù)列,當時,時,;

1)若集合,求當時,的值;

2)若集合,證明:時集合時集合(為了以示區(qū)別,用表示)有關系式,其中;

3)對于(2)中集合.定義,求(用n表示).

查看答案和解析>>

同步練習冊答案