7.定義運算$\left|\begin{array}{l}a\\ c\end{array}\right.\left.\begin{array}{l}b\\ d\end{array}\right|=ad-bc$,若復(fù)數(shù)$x=\frac{1-i}{1+i}$,$y=\left|\begin{array}{l}4i\\ 1+i\end{array}\right.\left.\begin{array}{l}3-xi\\ x+i\end{array}\right|$,則y=-2-2i.

分析 利用復(fù)數(shù)代數(shù)形式的除法運算化簡x,代入$y=\left|\begin{array}{l}4i\\ 1+i\end{array}\right.\left.\begin{array}{l}3-xi\\ x+i\end{array}\right|$后直接利用定義得答案.

解答 解:$x=\frac{1-i}{1+i}$=$\frac{{(1-i)}^{2}}{(1+i)(1-i)}$=$\frac{-2i}{i}$=-i,
由定義可知,
 $y=\left|\begin{array}{l}4i\\ 1+i\end{array}\right.\left.\begin{array}{l}3-xi\\ x+i\end{array}\right|$=4xi-4-(3+3i-xi+x)=5xi-7-3i-x=-2-2i.
故答案為:-2-2i.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}滿足:an+1>2an-an-1(n>1.n∈N*),給出下述命題:
①若數(shù)列{an}滿足:a2>a1,則an>an-1(n>1,n∈N*)成立;
②存在常數(shù)c,使得an>c(n∈N*)成立;
③若p+q>m+n(其中p,q,m,n∈N*),則ap+aq>am+an
④存在常數(shù)d,使得an>a1+(n-1)d(n∈N*)都成立
上述命題正確的個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2CD=2,E是PB上的一點.
(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)如圖(1),若$\overrightarrow{PE}$=$\frac{1}{3}$$\overrightarrow{PB}$,求證:PD∥平面EAC;
(Ⅲ)如圖(2),若E是PB的中點,PC=2,求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知P是△ABC內(nèi)一點,且滿足2$\overrightarrow{PA}$+3$\overrightarrow{PB}$+4$\overrightarrow{PC}$=$\overrightarrow{0}$,那么S△PBC:SPCA:S△PAB等于( 。
A.4:3:2B.2:3:4C.$\frac{1}{4}$:$\frac{1}{3}$:$\frac{1}{2}$D.$\frac{1}{2}$:$\frac{1}{3}$:$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)α、β、γ為平面,m、n、l為直線,則能推m⊥β是( 。
A.α⊥β,α∩β=l,m⊥lB.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}通項an=2n-1,且數(shù)列{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}的前m項和為5,則m=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.定義:從一個數(shù)列{an}中抽取若干項(不少于三項)按其在{an}中的次序排列的一列數(shù)叫做{an}的子數(shù)列,成等差(等比)的子數(shù)列叫做{an}的等差(等比)子列.
(1)記數(shù)列{an}的前n項和為Sn,已知Sn=n2,求證:數(shù)列{a3n}是數(shù)列{an}的等差子列;
(2)設(shè)等差數(shù)列{an}的各項均為整數(shù),公差d≠0,a5=6,若數(shù)列a3,a5,a${\;}_{{n}_{1}}$是數(shù)列{an}的等比子列,求n1的值;
(3)設(shè)數(shù)列{an}是各項均為實數(shù)的等比數(shù)列,且公比q≠1,若數(shù)列{an}存在無窮多項的等差子列,求公比q的所有值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個班進行教改實驗.為了了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個班級的學(xué)生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如圖).記成績不低于90分者為“成績優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
甲班(A方式)乙班(B方式)總計
成績優(yōu)秀12420
成績不優(yōu)秀384680
總計5050100
(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學(xué)方式有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知復(fù)數(shù)${z_1}=sinx+λi,{z_2}=({sinx+\sqrt{3}cosx})-i$(λ,x∈R,i為虛數(shù)單位).
(1)若2z1=i•z2,且$x∈({0,\frac{π}{2}})$,求x與λ的值;
(2)設(shè)復(fù)數(shù)z1,z2在復(fù)平面上對應(yīng)的向量分別為$\overrightarrow{O{Z_1}},\overrightarrow{O{Z_2}}$,且$\overrightarrow{O{Z_1}}⊥\overrightarrow{O{Z_2}}$,λ=f(x),求f(x)的最小正周期和單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案