2.設(shè)α、β、γ為平面,m、n、l為直線,則能推m⊥β是( 。
A.α⊥β,α∩β=l,m⊥lB.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α

分析 根據(jù)面面垂直的判定定理可知選項(xiàng)A是否正確,
根據(jù)平面α與平面β的位置關(guān)系進(jìn)行判定可知選項(xiàng)B和C是否正確,
根據(jù)垂直于同一直線的兩平面平行,以及與兩平行平面中一個(gè)垂直則垂直于另一個(gè)平面,可知選項(xiàng)D正確

解答 解:對(duì)于A,α⊥β,α∩β=l,m⊥l,根據(jù)面面垂直的判定定理可知,缺少條件m?α,故不正確;
對(duì)于B,α∩γ=m,α⊥γ,β⊥γ,而α與β可能平行,也可能相交,則m與β不一定垂直,故不正確;
對(duì)于C,α⊥γ,β⊥γ,m⊥α,而α與β可能平行,也可能相交,則m與β不一定垂直,故不正確;
對(duì)于D,n⊥α,n⊥β,⇒α∥β,而m⊥α,則m⊥β,故正確;
故選:D.

點(diǎn)評(píng) 本小題主要考查空間線面關(guān)系、面面關(guān)系等知識(shí),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x3+bx2+cx的導(dǎo)函數(shù)圖象關(guān)于直線x=2對(duì)稱
(1)求b值;
(2)若f(x)在x=t處取得極小值,記此極小值為g(t),求g(t)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,如果輸入n=3,則輸出的S值為( 。
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{3}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一個(gè)幾何體的三視圖及尺寸如圖所示,則該幾何體的體積為( 。
A.24B.30C.48D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow a•(\overrightarrow a+2\overrightarrow b)=0$,$|\overrightarrow a|=|\overrightarrow b|=2$,則向量$\overrightarrow a,\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義運(yùn)算$\left|\begin{array}{l}a\\ c\end{array}\right.\left.\begin{array}{l}b\\ d\end{array}\right|=ad-bc$,若復(fù)數(shù)$x=\frac{1-i}{1+i}$,$y=\left|\begin{array}{l}4i\\ 1+i\end{array}\right.\left.\begin{array}{l}3-xi\\ x+i\end{array}\right|$,則y=-2-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)$y={log_{\frac{1}{2}}}({x^2}-4x-5)$的遞增區(qū)間為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為60°,那么$|{3\overrightarrow a+\overrightarrow b}|$等于( 。
A.4B.$\sqrt{13}$C.$\sqrt{10}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表所示:
積極參加班級(jí)工作不積極參加班級(jí)工作合計(jì)
學(xué)習(xí)積極性高18725
學(xué)習(xí)積極性不高61925
合計(jì)242650
(1)若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項(xiàng)活動(dòng),問(wèn)兩名學(xué)生中有1名男生的概率是多少?
(2)有多少的把握認(rèn)為“學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度”有關(guān)系?請(qǐng)說(shuō)明理由.
附:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案