5.向量$\overrightarrow a=({λ,1}),\overrightarrow b=({1,-1})$,且$\overrightarrow a$與$\overrightarrow b$的夾角為銳角,則λ的取值范圍為( 。
A.λ<1B.λ≤1C.λ≥1D.λ>1

分析 由題意可知:cosθ>0,即$\overrightarrow a$•$\overrightarrow b$>0,且$\overrightarrow a$與$\overrightarrow b$不共線,根據(jù)向量數(shù)量積的運(yùn)算即可求得λ的取值范圍.

解答 解:$\overrightarrow a=({λ,1}),\overrightarrow b=({1,-1})$,且$\overrightarrow a$與$\overrightarrow b$的夾角θ為銳角,
則有 cosθ>0,即$\overrightarrow a$•$\overrightarrow b$>0,且$\overrightarrow a$與$\overrightarrow b$不共線,
∴λ-1>0,且-λ≠1,即λ>1,且λ≠-1,
故λ>1,
故答案選:D.

點(diǎn)評(píng) 本題考查數(shù)量積與向量的夾角,去除同向是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點(diǎn)$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,1),若$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$-$\overrightarrow$|,則實(shí)數(shù)m等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在某次試驗(yàn)中,有兩個(gè)試驗(yàn)數(shù)據(jù)x,y,統(tǒng)計(jì)的結(jié)果如表格.
x12345
y23445
(1)在給出的坐標(biāo)系中畫出x,y的散點(diǎn)圖;

(2)求出y對(duì)x的回歸直線方程$\widehaty=\widehatbx+\widehata$,并估計(jì)當(dāng)x為10時(shí)y的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.D為△ABC的BC邊上一點(diǎn),$\overline{DC}=-2\overline{DB}$,過D點(diǎn)的直線分別交直線AB、AC于E、F,若$\overline{AE}=λ\overline{AB},\overline{AF}=μ\overline{AC}$,其中λ>0,μ>0,則$\frac{2}{λ}+\frac{1}{μ}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,P、Q分別是正方形AA1D1D和A1B1C1D1的中心.
(1)證明:PQ∥平面DD1C1C;
(2)求線段PQ的長(zhǎng);
(3)求PQ與B1C所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在區(qū)間(0,2)內(nèi)任取兩個(gè)數(shù)a,b,則使方程x2+(a2-2)x+b2=0的兩個(gè)根分別作為橢圓與雙曲線的離心率的概率為( 。
A.$\frac{1}{8}$B.$\frac{π}{8}$C.$\frac{π}{16}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在同一平面直角坐標(biāo)系中經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后,曲線C變?yōu)榍2x′2+8y′2=0,則曲線C的方程為( 。
A.25x2+36y2=0B.9x2+100y2=0C.10x+24y=0D.$\frac{2}{25}{x^2}+\frac{8}{9}{y^2}=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow$,$\overrightarrow99awmuw$=k$\overrightarrow{a}$-$\overrightarrow$ (k∈R),且$\overrightarrow{c}$$⊥\overrightarrowru9jwpm$,那么k=( 。
A.$\frac{8}{7}$B.2C.$\frac{4}{7}$D.$\frac{\sqrt{57}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,a1=2,且an+1-4an=22n+1,則數(shù)列{${\frac{a_n}{4^n}}\right.$}的前n項(xiàng)和為$\frac{n}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案