10.在復(fù)平面中,復(fù)數(shù)$\frac{1}{(1+i)^{2}+1}$對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出復(fù)數(shù)$\frac{1}{(1+i)^{2}+1}$對(duì)應(yīng)的點(diǎn)的坐標(biāo)得答案.

解答 解:∵$\frac{1}{(1+i)^{2}+1}$=$\frac{1}{1+2i}=\frac{1-2i}{(1+2i)(1-2i)}=\frac{1}{5}-\frac{2}{5}i$,
∴復(fù)數(shù)$\frac{1}{(1+i)^{2}+1}$對(duì)應(yīng)的點(diǎn)的坐標(biāo)為($\frac{1}{5},-\frac{2}{5}$),在第四象限.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某位股民購(gòu)進(jìn)某只股票,在接下來的交易時(shí)間內(nèi),他的這只股票先經(jīng)歷了5次漲停(每次上漲10%),又經(jīng)歷了5次跌停(每次下跌10%),則該股民這只股票的盈虧情況(不考慮其他費(fèi)用)為(  )
A.略有盈利B.略有虧損
C.沒有盈利也沒有虧損D.無法判斷盈虧情況

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C:$\left\{\begin{array}{l}{x=-3+4cosθ}\\{y=4+4sinθ}\end{array}\right.$(θ為參數(shù)),直線l1:kx-y+k=0,l2:cosθ-2sinθ=$\frac{4}{ρ}$
(Ⅰ)寫出曲線C和直線l2的普通方程;
(Ⅱ)l1與C交于不同兩點(diǎn)M,N,MN的中點(diǎn)為P,l1與l2的交點(diǎn)為Q,l1恒過點(diǎn)A,求|AP|•|AQ|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=a+acosβ}\\{y=asinβ}\end{array}\right.$(a>0,β為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$.
(Ⅰ)若曲線C與l只有一個(gè)公共點(diǎn),求a的值;
(Ⅱ)A,B為曲線C上的兩點(diǎn),且∠AOB=$\frac{π}{3}$,求△OAB的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+cos(2x+$\frac{π}{3}$)+sin2x
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若f($\frac{A}{2}$)=$\sqrt{2}$,a=2,b=$\sqrt{6}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)樣本數(shù)據(jù)x1、x2,…,x2017的方差是4,若yi=xi-1(i=1,2…,2017),則y1,y2,…,y2017的方差為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.王昌齡《從軍行》中兩句詩為“黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,其中后一句“攻破樓蘭”是“返回家鄉(xiāng)”的( 。
A.充要條件B.既不充分也不必要條件
C.充分條件D.必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足$\frac{{a}_{n}}{2}$=logabn(n∈N*),求數(shù)列{(an+6)•bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60,$|{\overrightarrow a}|=4,|{\overrightarrow b}|=1,則\overrightarrow b⊥(\overrightarrow a-x•\overrightarrow b)$時(shí),實(shí)數(shù)x為( 。
A.4B.2C.lD.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案