若函數(shù)f(x)=2|x+7|-|3x-4|的最小值為2,求自變量x的取值范圍.

解:依題意,2|x+7|-|3x-4|≥2
∴|x+7|-|3x-4|≥1,(2分)
時,不等式為x+7-(3x-4)≥1解得x≤5,即(3分)
時,不等式為x+7+(3x-4)≥1解得,即; (4分)
當x<-7時,不等式為-x-7+(3x-4)≥1,解得 x≥6,與x<-7矛盾 (5分)
∴自變量x的取值范圍為. (7分)
分析:分三種情況:①當時;②當時;③當x<-7時對函數(shù)f(x)=2|x+7|-|3x-4|,討論去絕對值,得函數(shù)f(x)為分段函數(shù).分別解相應范圍內的不等式,先交后并,最終可以得出滿足條件的自變量x的取值范圍.
點評:本題考查了函數(shù)最值的應用,以及函數(shù)和不等式相綜合等問題,屬于基礎題.按絕對值等于零的零點進行分類討論,將函數(shù)化為分段函數(shù)來解決最值問題,是解決本小題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

6、若函數(shù)f(x)=2-|x-1|-m的圖象與x軸有交點,則實數(shù)m的取值范圍是
0<m≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•延安模擬)若函數(shù)f(x)=2+sin2ωx(ω>0)的最小正周期與函數(shù)g(x)=tan
x
2
的最小正周期相等,則正實數(shù)ω的值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•東城區(qū)一模)把下面不完整的命題補充完整,并使之成為真命題,若函數(shù)f(x)=2+log3x的圖象與g(x)的圖象關于
x軸
x軸
對稱,則函數(shù)g(x)=
g(x)=-2-log3x
g(x)=-2-log3x
.(注:填上你認為可以成為真命題的一種答案即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2|x+7|-|3x-4|的最小值為2,求自變量x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2-|x|-x2+a有兩個不同的零點,則實數(shù)a的取值范圍是(  )
A、[1,+∞)B、(1,+∞)C、[-1,+∞)D、(-1,+∞)

查看答案和解析>>

同步練習冊答案