已知在平面直角坐標(biāo)系xoy上的區(qū)域由不等式組
x+y-5≤0
y≥x
x≥1
確定,若M(x,y)為區(qū)域D上的動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(2,3),則z=
OA
OM
的最大值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:根據(jù)數(shù)量積的坐標(biāo)公式,求出z的表達(dá)式,利用數(shù)形結(jié)合結(jié)合z的幾何意義,即可得到z的最大值.
解答: 解:z=
OA
OM
=2x+3y,
則y=-
2
3
x+
z
3
,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
平移直線y=-
2
3
x+
z
3
當(dāng)直線經(jīng)過(guò)點(diǎn)B時(shí),直線的截距最大,此時(shí)z最大.
x=1
x+y-5=0
,解得
x=1
y=4

即B(1,4),此時(shí)z的最大值為z=2+3×4=14,
故答案為:14.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)數(shù)量積的坐標(biāo)公式求出z的表達(dá)式是解決本題的關(guān)鍵,注意使用數(shù)形結(jié)合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:任意x∈R,x2+1≥a,命題q:函數(shù)f(x)=x2-2ax+1在(-∞,-1]上單調(diào)遞減.
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若p和q均為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項(xiàng)和.若a1,a3是方程x2-10x+9=0的兩個(gè)根,則S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(
x
+1)=x+
x
,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax3+3x2+2,若f(x)在x=1處的切線與直線x+3y+3=0垂直,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)數(shù)范圍內(nèi),i為虛數(shù)單位,若實(shí)數(shù)x,y滿足(1+i)x+(1-i)y=2 則x-y的值是( 。
A、1B、0C、-2D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于平面α,β,γ和直線a,b,m,n,下列命題中真命題是(  )
A、若a⊥m,a⊥n,m?α,n?α,則a⊥α
B、若α∥β,α∩γ=a,β∩γ=b,則a∥b
C、若a∥b,b?α,則a∥α
D、若a?β,b?β,a∥α,b∥α,則β∥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列推理中,錯(cuò)誤的個(gè)數(shù)為( 。
①若直線l上有兩點(diǎn)A、B在平面a內(nèi),則直線必為a內(nèi)直線;
②若α、β為兩個(gè)不同平面,A、B為α、β的兩個(gè)公共點(diǎn),則α、β一定還有其他公共點(diǎn),這些公共點(diǎn)都在直線AB上;
③若直線l在平面α外,點(diǎn)A為l上一點(diǎn),則點(diǎn)A一定也在平面α外;
④若平面α、β有三個(gè)不共線的公共點(diǎn)A、B、C,則α與β一定重合.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-4≤x≤a+3},B={x|x<-2或x≥4},若A∩B=A,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案