A. | [$\sqrt{3}$-1,$\frac{2}{3}$] | B. | [2-$\sqrt{3}$,$\frac{\sqrt{6}}{3}$] | C. | [$\sqrt{3}$-1,$\frac{\sqrt{6}}{3}$] | D. | [2-$\sqrt{3}$,$\frac{2}{3}$] |
分析 通過設(shè)橢圓的左焦點為F′,作點P關(guān)于原點對稱的點B,連接PF′、BF、PF、BF′構(gòu)造矩形PFBF′,用α的三角函數(shù)值表示|PF|、|BF|,進而利用離心率公式計算即得結(jié)論.
解答 解:設(shè)橢圓的左焦點為F′,作點P關(guān)于原點對稱的點B,
連接接PF′、BF、PF、BF′,則四邊形PFBF′為矩形.
因此|PB=|FF′|=2c,
∵|PF|+|BF|=2a,|PF|=2csinα,|BF|=2ccosα,
∴2csinα+2ccosα=2a,
∴e=$\frac{1}{sinα+cosα}$=$\frac{1}{\sqrt{2}sin(α+\frac{π}{4})}$,
又∵α∈[$\frac{π}{12}$,$\frac{π}{6}$],
∴α+$\frac{π}{4}$∈[$\frac{π}{3}$,$\frac{5π}{12}$],sin(α+$\frac{π}{4}$)∈[$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{2}+\sqrt{6}}{4}$],
∵$\frac{1}{e}$=$\sqrt{2}$sin(α+$\frac{π}{4}$)∈[$\frac{\sqrt{6}}{2}$,$\frac{1+\sqrt{3}}{2}$],
∴e∈[$\sqrt{3}$-1,$\frac{\sqrt{6}}{3}$],
故選:C.
點評 本題考查了橢圓的定義及其性質(zhì)、兩角差的正弦公式、正弦函數(shù)的單調(diào)性,考查了推理能力與計算能力,注意解題方法的積累,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1” | |
B. | 命題“?x0∈R,x02>1”的否定是“?x∈R,x2>1” | |
C. | 命題“x≤1是x2+2x-3≤0的必要不充分條件”為假命題 | |
D. | 命題“若x=y,則cosx=cosy”的逆命題為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com