【題目】如圖,在正方體中, 分別是的中點.

1)證明:平面平面

2上是否存在點,使平面?請證明你的結論.

【答案】(1)見解析(2)在棱上取點,使得,則平面.

【解析】試題分析:(1)證明平面平面,可先證明平面,可先證明, . (2) 延長, 交于,連,得,四邊形為平行四邊形,所以,即.即證得平面

試題解析:

(1)證明:因為分別是中點,結合正方體知識易得

所以

因為,

所以,即

又由正方體知識可知, 平面, 平面ABCD

所以,即

, 平面, 平面

于是平面

因為平面,

故平面平面

(2)解:在棱上取點,使得,則平面

證明如下:延長, 交于,連

因為, 中點,所以中點.

因為,所以,且

因為 中點,所以,

即四邊形為平行四邊形,

所以,即

平面 平面,

所以平面

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過橢圓 上一點軸作垂線,垂足為右焦點, 、分別為橢圓的左頂點和上頂點,且, .

(Ⅰ)求橢圓的方程;

(Ⅱ)若動直線與橢圓交于、兩點,且以為直徑的圓恒過坐標原點.問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的極值;

(Ⅱ)若函數(shù)的圖像與函數(shù)的圖像在區(qū)間上有公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R的奇函數(shù)滿足,且時, ,下面四種說法①;②函數(shù)在[-6,-2]上是增函數(shù);③函數(shù)關于直線對稱;④若,則關于的方程在[-8,8]上所有根之和為-8,其中正確的序號__________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,且a2+bc=b2+c2
(1)求∠A的大;
(2)若b=2,a= ,求邊c的大小;
(3)若a= ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,一直線過點 ,

①若直線在兩坐標軸上截距之和為12,求直線的方程;

②若直線 軸正半軸交于 兩點,當面積為 時求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中實數(shù)

(Ⅰ)判斷是否為函數(shù)的極值點,并說明理由;

(Ⅱ)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,

已知某圓的極坐標方程為:

(1)將極坐標方程化為直角坐標方程;

(2)若點 在該圓上,求的最大值和最小值.

查看答案和解析>>

同步練習冊答案