20.在數(shù)列{an}中,設(shè)f(n)=an,且f(n)滿足f(n+1)-2f(n)=2n(n∈N*),且a1=1.
(1)設(shè)${b_n}=\frac{a_n}{{{2^{n-1}}}}$,證明數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

分析 (1)利用遞推關(guān)系可得bn+1-bn=1,即可證明.
(2)利用“錯位相減法”與等比數(shù)列的求和公式即可得出.

解答 (1)證明:由已知得${a_{n+1}}=2{a_n}+{2^n}$,
得${b_{n+1}}=\frac{{{a_{n+1}}}}{2^n}=\frac{{2{a_n}+{2^n}}}{2^n}=\frac{a_n}{{{2^{n-1}}}}+1={b_n}+1$,
∴bn+1-bn=1,
又a1=1,∴b1=1,
∴{bn}是首項(xiàng)為1,公差為1的等差數(shù)列.
(2)解:由(1)知,${b_n}=\frac{a_n}{{{2^{n-1}}}}=n$,∴${a_n}=n•{2^{n-1}}$.
∴${S_n}=1+2•{2^1}+3•{2^2}+…+n•{2^{n-1}}$,
兩邊乘以2,得$2{S_n}=1•{2^1}+2•{2^2}+…+(n-1)•{2^{n-1}}+n•{2^n}$,
兩式相減得$-{S_n}=1+{2^1}+{2^2}+…+{2^{n-1}}-n•{2^n}$=2n-1-n•2n=(1-n)2n-1,
∴${S_n}=(n-1)•{2^n}+1$.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、“錯位相減法”與等比數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,三內(nèi)角A、B、C的對邊分別為a、b、c,且$\frac{c-b}{{\sqrt{2}c-a}}=\frac{sinA}{sinB+sinC}$
(I)求角B的大小,
(Ⅱ)設(shè)$\overrightarrow{m}=(sinA+cosA,1),\overrightarrow{n}=(2,cos(\frac{π}{2}-2A))$,求$\overrightarrow{m}•\overrightarrow{n}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在四邊形ABCD中(如圖①),AB∥CD,AB⊥BC,G為AD上一點(diǎn),且AB=AG=1,GD=CD=2,M為GC的中點(diǎn),點(diǎn)P為邊BC上的點(diǎn),且滿足BP=2PC.現(xiàn)沿GC折疊使平面GCD⊥平面ABCG(如圖②).
(1)求證:平面BGD⊥平面GCD:
(2)求直線PM與平面BGD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.將撲克牌4種花色的A,K,Q共12張洗勻.
(1)甲從中任意抽取2張,求抽出的2張都為A的概率;
(2)若甲已抽到了2張K后未放回,求乙抽到2張A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=3-t}\\{y=1+t}\end{array}$(t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C:ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(Ⅰ) 求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ) 求曲線C上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.四個人圍坐在一張圓桌旁,每個人面前放著完全相同的硬幣,所有人同時翻轉(zhuǎn)自己的硬幣.若硬幣正面朝上,則這個人站起來; 若硬幣正面朝下,則這個人繼續(xù)坐著.那么,沒有相鄰的兩個人站起來的概率為( 。
A.$\frac{1}{4}$B.$\frac{7}{16}$C.$\frac{1}{2}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)橢圓E:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,且點(diǎn)M($\frac{\sqrt{2}}{2}$,-1)在橢圓上.
(1)求橢圓E的方程;
(2)直線經(jīng)過點(diǎn)M(-2,0)與橢圓E交于A,B兩點(diǎn),O為原點(diǎn),試求△AOB面積最大值及此時的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果z是3+4i的共軛復(fù)數(shù),則z對應(yīng)的向量$\overrightarrow{OA}$的模是( 。
A.1B.$\sqrt{7}$C.$\sqrt{13}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列給出的函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是( 。
A.$y=\frac{2}{x}$B.y=x3C.y=-x2D.$y=\sqrt{x}$

查看答案和解析>>

同步練習(xí)冊答案