11.三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的正三角形,側(cè)棱A1A⊥底面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),點(diǎn)M是線段AC上的動(dòng)點(diǎn),EC=2FB=2.
(1)當(dāng)點(diǎn)M在什么位置時(shí),有BM∥平面AEF,并加以證明.
(2)求四棱錐A-BCEF的表面積.

分析 (1)M為AC中點(diǎn);取AE的中點(diǎn)O,連接OF,OM;證明BM∥OF,即可證明BM∥平面AEF;
(2)分別計(jì)算四棱錐A-BCEF各個(gè)面的面積,求和即可.

解答 解:(1)M為AC中點(diǎn);
證明如下:取AE的中點(diǎn)O,連接OF,OM;
∵O,M分別為AE,AC的中點(diǎn),
∴OM∥CE,
∵BF∥CE,且EC=2FB=2,

∴OM∥FB∥CE,且OM=FB=$\frac{1}{2}CE$;
∴四邊形OMBF為矩形,
故BM∥OF;
又BM?平面AEF,OF?平面AEF,
∴BM∥平面AEF;
(2)四棱錐A-BCEF的表面積為
S=S梯形BCEF+S△ABC+S△ABF+S△AEF+S△ACE
=$\frac{1}{2}$×(1+2)×2+$\frac{1}{2}$×22×sin$\frac{π}{3}$+$\frac{1}{2}$×2×1+$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{5-2}$+$\frac{1}{2}$×2×2
=6+$\sqrt{3}$+$\sqrt{6}$.

點(diǎn)評(píng) 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問題,也考查了幾何體表面積的計(jì)算問題,是綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f (x)=sinx+$\sqrt{3}$cosx (x∈R).
(Ⅰ)求函數(shù)f (x)的周期和最大值;
(Ⅱ)若f (A+$\frac{π}{6}$)=$\frac{2}{3}$,求cos2A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足f'(x)<f(x),且f(x+2)=f(-x+2),f(4)=1,則不等式f(x)<ex的解集為( 。
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=log3(a+x)+log3(2-x)(a∈R)是偶函數(shù).
(1)若f(p)=1,求實(shí)數(shù)p的值;
(2)若存在m使得f(2m-1)<f(m)成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,已知三棱錐S-ABC中,SA=SB=CA=CB=$\sqrt{3}$,AB=2,SC=$\sqrt{2}$,則二面角S-AB-C的平面角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=$\frac{1}{{\sqrt{-{x^2}+2x+3}}}+ln({x^2}-1)$ 的定義域是{x|1<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,O為AC與BD的交點(diǎn),AB⊥平面PAD,△PAD是正三角形,DC∥AB,DA=DC=2AB=2a.
(1)若點(diǎn)E為棱PA上一點(diǎn),且OE∥平面PBC,求$\frac{AE}{PE}$的值;
(2)求證:平面PBC⊥平面PDC;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.集合{-2,1}等于(  )
A.{(x-1)(x+2)=0}B.{y|y=x+1,x∈Z}C.{x|(x+1)(x-2)=0}D.{x|(x-1)(x+2)=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,$\overrightarrow{a}$($\overrightarrow-\overrightarrow{a}$)=-3,則向量$\overrightarrow$在$\overrightarrow{a}$方向上的投影為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案