如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn),設(shè)點(diǎn),,為拋物線(xiàn)上的動(dòng)點(diǎn)(異于頂點(diǎn)),連結(jié)并延長(zhǎng)交拋物線(xiàn)于點(diǎn),連結(jié)、并分別延長(zhǎng)交拋物線(xiàn)于點(diǎn)、,連結(jié),設(shè)、的斜率存在且分別為、.
(1)若,,,求;
(2)是否存在與無(wú)關(guān)的常數(shù),是的恒成立,若存在,請(qǐng)將用、表示出來(lái);若不存在請(qǐng)說(shuō)明理由.
(1)2;(2).
解析試題分析:(1)依題意求直線(xiàn)的方程,設(shè)兩點(diǎn)的坐標(biāo)分別為,聯(lián)立方程組消去得到關(guān)于的方程,由韋達(dá)定理求出
,在根據(jù)弦長(zhǎng)公式求解;(2)設(shè)求直線(xiàn)的方程代入拋物線(xiàn)方程,消去得到關(guān)于的方程,找到的關(guān)系是,用表示點(diǎn)的坐標(biāo),同理用表示點(diǎn)的坐標(biāo),由于三點(diǎn)共線(xiàn),找到的關(guān)系,最后用斜率公式求,整理即得.
試題解析:(1)直線(xiàn),設(shè)
4分
(2)設(shè)
則直線(xiàn)的方程為:,代入拋物線(xiàn)方程,
整理得,
,即
從而,故點(diǎn)
同理,點(diǎn) 8分
三點(diǎn)共線(xiàn)
即
整理得
所以,
即 13分
考點(diǎn):直線(xiàn)與拋物線(xiàn)的位置關(guān)系,斜率公式,韋達(dá)定理, 弦長(zhǎng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線(xiàn)的方程為.
(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線(xiàn)交于點(diǎn),以為直徑的圓記為. ①若恰好是橢圓的上頂點(diǎn),求截直線(xiàn)所得的弦長(zhǎng);
②設(shè)與直線(xiàn)交于點(diǎn),試證明:直線(xiàn)與軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿(mǎn)足,且的面積.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線(xiàn),使與橢圓交于不同的兩點(diǎn)、,且線(xiàn)段恰被直線(xiàn)平分?若存在,求出的斜率取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)C:,定點(diǎn)M(0,5),直線(xiàn)與軸交于點(diǎn)F,O為原點(diǎn),若以O(shè)M為直徑的圓恰好過(guò)與拋物線(xiàn)C的交點(diǎn).
(1)求拋物線(xiàn)C的方程;
(2)過(guò)點(diǎn)M作直線(xiàn)交拋物線(xiàn)C于A,B兩點(diǎn),連AF,BF延長(zhǎng)交拋物線(xiàn)分別于,求證: 拋物線(xiàn)C分別過(guò)兩點(diǎn)的切線(xiàn)的交點(diǎn)Q在一條定直線(xiàn)上運(yùn)動(dòng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知橢圓的兩個(gè)焦點(diǎn)分別為、,且到直線(xiàn)的距離等于橢圓的短軸長(zhǎng).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經(jīng)過(guò)、,是橢圓上的動(dòng)點(diǎn)且在圓外,過(guò)作圓的切線(xiàn),切點(diǎn)為,當(dāng)的最大值為時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為、,為原點(diǎn).
(1)如圖1,點(diǎn)為橢圓上的一點(diǎn),是的中點(diǎn),且,求點(diǎn)到軸的距離;
(2)如圖2,直線(xiàn)與橢圓相交于、兩點(diǎn),若在橢圓上存在點(diǎn),使四邊形為平行四邊形,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓過(guò)定點(diǎn),圓心在拋物線(xiàn)上,、為圓與軸的交點(diǎn).
(1)當(dāng)圓心是拋物線(xiàn)的頂點(diǎn)時(shí),求拋物線(xiàn)準(zhǔn)線(xiàn)被該圓截得的弦長(zhǎng).
(2)當(dāng)圓心在拋物線(xiàn)上運(yùn)動(dòng)時(shí),是否為一定值?請(qǐng)證明你的結(jié)論.
(3)當(dāng)圓心在拋物線(xiàn)上運(yùn)動(dòng)時(shí),記,,求的最大值,并求出此時(shí)圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:的兩個(gè)焦點(diǎn)是F1(c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線(xiàn)與橢圓C有公共點(diǎn),求的取值范圍;
(II)設(shè)E是(I)中直線(xiàn)與橢圓的一個(gè)公共點(diǎn),求|EF1|+|EF2|取得最小值時(shí),橢圓的方程;
(III)已知斜率為k(k≠0)的直線(xiàn)l與(II)中橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿(mǎn)足 且,其中N為橢圓的下頂點(diǎn),求直線(xiàn)l在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過(guò)定點(diǎn)M(2,0)且斜率不為0的直線(xiàn)交橢圓C于A、B兩點(diǎn),試問(wèn)在x軸上是否另存在一個(gè)定點(diǎn)P使得始終平分?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com