19.在x軸上與點(diǎn)A (-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)的坐標(biāo)為(  )
A.(-2,0,0)B.(-3,0,0)C.(3,0,0)D.(2,0,0)

分析 設(shè)所求點(diǎn)的坐標(biāo)為(x,0,0),利用兩點(diǎn)間距離公式能求出所求點(diǎn)的坐標(biāo).

解答 解:設(shè)所求點(diǎn)的坐標(biāo)為(x,0,0),
則$\sqrt{(-4-x)^{2}+(1-0)^{2}+(7-0)^{2}}$=$\sqrt{(3-x)^{2}+(5-0)^{2}+(-2-0)^{2}}$,
解得x=-2,
∴所求點(diǎn)的坐標(biāo)為(-2,0,0).
故選:A.

點(diǎn)評(píng) 本題考查空間中點(diǎn)的坐標(biāo)的求法,考查空間兩點(diǎn)間距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,直角梯形ABCD與等邊△ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=AD=2,F(xiàn)為線段EA上的點(diǎn),且EA=3EF.
(I)求證:EC∥平面FBD
(Ⅱ)求多面體EFBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{3}$|$\overrightarrow{a}$|,且($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$為( 。
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過(guò)點(diǎn)(0,1),且離心率為$\frac{{\sqrt{3}}}{2}$
(Ⅰ)求橢圓C 的方程;
(Ⅱ)直線l1,l2 都過(guò)點(diǎn)H(0,m)(m≠0),分別與x 軸相交于D,E,其中D 為OE 的中點(diǎn)(O 為坐標(biāo)原點(diǎn)).直線l1 與圓x2+y2=$\frac{1}{2}$ 相切,直線l2 與橢圓C 相交于M,N,
求證:△OMN 的面積為定值;
(Ⅲ)在(Ⅱ)的條件下,設(shè)P 為M,N 中點(diǎn),Q 是橢圓上的點(diǎn),$\overrightarrow{OP}=λ\overrightarrow{OQ}$ (λ>0 ),求λ 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在三棱錐P-ABC中,AC=BC=$\sqrt{2}$,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求二面角B-AP-C的正切值;
2)求點(diǎn)C到平面APB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知全集U={a1,a2,a3,a4},集合A是集合U的恰有兩個(gè)元素的子集,且滿足下列三個(gè)條件:①若a1∈A,則a2∈A;②若a3∉A,則a2∉A;③若a3∈A,則a4∉A,則集合A={a2,a3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在正三棱錐S-ABC中,異面直線SA與BC所成角的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若圓(x-a)2+(y-a)2=1(a>0)上總存在兩個(gè)點(diǎn)到原點(diǎn)的距離為1,則a的取值范圍是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.圓心在y軸上,半徑為1,且過(guò)點(diǎn)(1,2)的圓的標(biāo)準(zhǔn)方程是x2+(y-2)2=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案