11.在正三棱錐S-ABC中,異面直線SA與BC所成角的大小為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 取BC中點(diǎn)O,連結(jié)AO、SO,推導(dǎo)出BC⊥平面SOA,從而得到異面直線SA與BC所成角的大小為90°.

解答 解:取BC中點(diǎn)O,連結(jié)AO、SO
∵在正三棱錐S-ABC中,SB=SC,AB=AC,
∴SO⊥BC,AO⊥BC,
∵SO∩AO=O,∴BC⊥平面SOA,
∵SA?平面SAO,
∴BC⊥SA,
∴異面直線SA與BC所成角的大小為90°.
故選:C.

點(diǎn)評(píng) 題考查異面直線所成角的求法,根據(jù)定義找出所求的角是解題關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知拋物線方程是:y2=20x,則拋物線的通徑的長(zhǎng)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓C的左、右頂點(diǎn),$\overrightarrow{A{F_2}}=(5+2\sqrt{6})\overrightarrow{{F_2}B}$,且OF2(其中O為坐標(biāo)原點(diǎn))的中點(diǎn)坐標(biāo)為$(\frac{{\sqrt{30}}}{6},0)$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知?jiǎng)又本y=k(x+1)與橢圓C相交于P,Q兩點(diǎn),已知點(diǎn)$M(-\frac{7}{3},0)$,求證:$\overrightarrow{MP}•\overrightarrow{MQ}$是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在x軸上與點(diǎn)A (-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)的坐標(biāo)為(  )
A.(-2,0,0)B.(-3,0,0)C.(3,0,0)D.(2,0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知橢圓Γ:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1 (a>b>0)經(jīng)過(guò)不同的三點(diǎn)A($\frac{{\sqrt{5}}}{2}$,$\frac{{\sqrt{5}}}{4}$),B(-$\frac{1}{2}$,-$\frac{3}{4}$),C(C在第三象限),線段BC的中點(diǎn)在直線OA上.
(Ⅰ)求橢圓Γ的方程及點(diǎn)C的坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是橢圓Γ上的動(dòng)點(diǎn)(異于點(diǎn)A、B、C)且直線PB、
PC分別交直線OA于M、N兩點(diǎn),問(wèn)|OM|•|ON|是否為定值?
若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.正項(xiàng)等比數(shù)列{an}中,若a2a98=16,則log2(a3a97)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知數(shù)列{an},{bn}的通項(xiàng)公式分別是an=(-1)n+2016•a,bn=2+$\frac{{{{({-1})}^{n+2017}}}}{n}$,若an<bn,對(duì)任意n∈N+恒成立,則實(shí)數(shù)a的取值范圍是$[{-2,\frac{3}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.復(fù)數(shù)$\frac{1+i}{1-i}$=( 。
A.iB.-iC.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.下列說(shuō)法:
①分類(lèi)變量A與B的隨機(jī)變量K2越大,說(shuō)明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1,$\overline{x}$=1,$\overline{y}$=3,
則a=1.正確的序號(hào)是①②.

查看答案和解析>>

同步練習(xí)冊(cè)答案