9.已知隨機(jī)變量X服從正態(tài)分布N(2,σ2),若P(-1<X≤2)=0.35,則P(X≥5)等于(  )
A.0.65B.0.5C.0.15D.0.1

分析 隨機(jī)變量X服從正態(tài)分布N(2,σ2),得到曲線關(guān)于x=2對(duì)稱,根據(jù)曲線的對(duì)稱性得到結(jié)論.

解答 解:∵隨機(jī)變量X服從正態(tài)分布N(2,σ2),
∴曲線關(guān)于x=2對(duì)稱,
∵P(-1<X≤2)=0.35,
∴P(2<X≤5)=0.35,
∴P(X≥5)=0.5-0.35=0.15.
故選:C.

點(diǎn)評(píng) 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查概率的性質(zhì),是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=ex+x2-x在區(qū)間[-1,1]上的值域?yàn)閇1,e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=$\frac{1}{\sqrt{4-{x}^{2}}}$+lnx的定義域?yàn)椋?,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個(gè)命題:
①若α∥β,α∥γ,則β∥γ;
②若α⊥β,m∥α,則m⊥β;           
③若m⊥α,m∥β,則α⊥β;       
④若m∥n,m∥α,則n∥α.
其中真命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x+m(0≤x≤$\frac{π}{2}$).
(1)若函數(shù)f(x)的最大值為6,求常數(shù)m的值;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1和x2,求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t-1)f(x)-$\frac{3sinx-\sqrt{3}cosx}{\sqrt{3}cosx+sinx}$(t≥2),討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.5位大學(xué)生站在一排照相.
(1)若其中的甲乙兩位同學(xué)必須相等,問有多少種不同的排法?
(2)若上述5位大學(xué)生中有3位女大學(xué)生和2位男大學(xué)生,則這兩位男大學(xué)生不相鄰的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的側(cè)面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖在三棱錐P-ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn),已知AD=PD,PA=6,BC=8,DF=5,求證:
(1)直線PA∥平面DEF;
(2)平面DEF⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知四邊形ABCD為梯形,AB∥DC,對(duì)角線AC,BD交于點(diǎn)O,CE⊥平面ABCD,CE=AD=DC=BC=1,∠ABC=60°,F(xiàn)為線段BE上的點(diǎn),$\overrightarrow{EF}$=$\frac{1}{3}$$\overrightarrow{EB}$.
(I)證明:OF∥平面CED;
(Ⅱ)求平面ADF與平面BCE所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案