5.已知R是實(shí)數(shù)集,集合 A={x|22x+1≥16},B={x|(x-1)(x-3)<0,則(∁RA)∩B=( 。
A.(1,2)B.[1,2]C.(1,3)D.(1,$\frac{3}{2}$)

分析 運(yùn)用指數(shù)不等式和二次不等式的解法,可得集合A,B,求出∁RA,再由交集的定義,即可得到所求集合.

解答 解:集合 A={x|22x+1≥16}={x|22x+1≥24}={x|2x+1≥4}={x|x≥$\frac{3}{2}$},
B={x|(x-1)(x-3)<0}={x|1<x<3},
RA={x|x<$\frac{3}{2}$},
可得(∁RA)∩B={x|1<x<$\frac{3}{2}$}=(1,$\frac{3}{2}$).
故選:D.

點(diǎn)評(píng) 本題考查集合的運(yùn)算,主要是交集和補(bǔ)集的求法,同時(shí)考查指數(shù)不等式和二次不等式的解法,運(yùn)用定義法解題是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.二項(xiàng)式(9x+$\frac{1}{3\sqrt{x}}$)18的展開式的常數(shù)項(xiàng)為18564(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.平面直角坐標(biāo)系xOy中,A(2,4),B(-1,2),C,D為動(dòng)點(diǎn),
(1)若C(3,1),求平行四邊形ABCD的兩條對(duì)角線的長度
(2)若C(a,b),且$\overrightarrow{CD}=(3,1)$,求$\overrightarrow{AC}•\overrightarrow{BD}$取得最小值時(shí)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,CD∥AB,AD=DC=$\frac{1}{2}$AB.
(1)若M是PB的中點(diǎn),求證:CM∥平面PAD;
(2)若AD⊥AB,BC⊥PC,求證:平面PAC⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=(sinx+cosx)cosx,則下列說法正確的為( 。
A.函數(shù)f(x)的最小正周期為2π
B.f(x)在[$\frac{5π}{8}$,$\frac{9π}{8}$]單調(diào)遞減
C.f(x)的圖象關(guān)于直線x=-$\frac{π}{6}$對(duì)稱
D.將f(x)的圖象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$個(gè)單位長度后會(huì)得到一個(gè)奇函數(shù)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在平面直角坐標(biāo)系內(nèi),區(qū)域M滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤1\end{array}$區(qū)域N滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤sinx\end{array}$則向區(qū)域M內(nèi)投一點(diǎn),落在區(qū)域N內(nèi)的概率是(  )
A.$\frac{2}{π}$B.$\frac{π}{4}$C.2-$\frac{2}{π}$D.2-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}中,a1=1,n≥2且n∈N*時(shí),an=an-1+2n-1,依次計(jì)算a2,a3,a4后,猜想an的表達(dá)式是n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知正方形ABCD的邊長為2,E是BC的中點(diǎn),以點(diǎn)C為圓心,CE長為半徑作圓,點(diǎn)P是該圓上的任一點(diǎn),則$\overrightarrow{AP}•\overrightarrow{DE}$的取值范圍是(  )
A.$[0,2+\sqrt{6}]$B.$[2-\sqrt{6},2+\sqrt{6}]$C.$[0,2+\sqrt{5}]$D.$[2-\sqrt{5},2+\sqrt{5}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若圓C與y軸相切于點(diǎn)P(0,1),與x軸的正半軸交于A,B兩點(diǎn),且|AB|=2,則圓C的標(biāo)準(zhǔn)方程是( 。
A.${(x+\sqrt{2})^2}+{(y+1)^2}=2$B.${(x+1)^2}+{(y+\sqrt{2})^2}=2$C.${(x-\sqrt{2})^2}+{(y-1)^2}=2$D.${(x-1)^2}+{(y-\sqrt{2})^2}=2$

查看答案和解析>>

同步練習(xí)冊(cè)答案