分析 (1)$\overrightarrow{AC}$=(1,-3),$\overrightarrow{BA}$=(3,2).可得$|\overrightarrow{AC}|$.由平行四邊形的性質可得:$\overrightarrow{CD}$=$\overrightarrow{BA}$,可得$\overrightarrow{OD}$=$\overrightarrow{OC}$+$\overrightarrow{BA}$.可得$\overrightarrow{BD}$.
(2)C(a,b),且$\overrightarrow{CD}=(3,1)$,可得$\overrightarrow{OD}$=$\overrightarrow{OC}$+(3,1),可得$\overrightarrow{BD}$=(a+4,b-1).$\overrightarrow{AC}$=(a-2,b-4).利用數(shù)量積運算性質、二次函數(shù)的單調性即可得出.
解答 解:(1)$\overrightarrow{AC}$=(1,-3),$\overrightarrow{BA}$=(3,2).
$|\overrightarrow{AC}|$=$\sqrt{{1}^{2}+(-3)^{2}}$=$\sqrt{10}$.
由平行四邊形的性質可得:$\overrightarrow{CD}$=$\overrightarrow{BA}$,可得$\overrightarrow{OD}$=$\overrightarrow{OC}$+$\overrightarrow{BA}$=(6,3).
∴$\overrightarrow{BD}$=(7,1),可得:$|\overrightarrow{BD}|$=$\sqrt{{7}^{2}+{1}^{2}}$=5$\sqrt{2}$.
(2)C(a,b),且$\overrightarrow{CD}=(3,1)$,∴$\overrightarrow{OD}$=$\overrightarrow{OC}$+(3,1)=(a+3,b+1).
∴$\overrightarrow{BD}$=(a+4,b-1).
$\overrightarrow{AC}$=(a-2,b-4).
∴$\overrightarrow{AC}•\overrightarrow{BD}$=(a-2)(a+4)+(b-4)(b-1)=a2+2a-8+b2-5b+4
=(a+1)2+$(b-\frac{5}{2})^{2}$-$\frac{45}{4}$≥$-\frac{45}{4}$,當且僅當a=-1,b=$\frac{5}{2}$時取等號.
點評 本題考查了向量坐標運算性質、數(shù)量積運算性質、二次函數(shù)的單調性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $\frac{9\sqrt{3}}{2}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2) | B. | [1,2] | C. | (1,3) | D. | (1,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com