Rt△ABC中,A=30°,BC=2,將Rt△ABC沿斜邊AC所在直線旋轉(zhuǎn)一周,那么所得幾何體的體積為
 
分析:由題意可知旋轉(zhuǎn)體可以看作是由兩個相同底面的圓錐構(gòu)成的,求出底面半徑,即可求出兩個圓錐的體積.
解答:精英家教網(wǎng)解:Rt△ABC中,A=30°,BC=2,將Rt△ABC沿斜邊AC所在直線旋轉(zhuǎn)一周,
旋轉(zhuǎn)體可以看作是由兩個相同底面的圓錐構(gòu)成的,
底面半徑為
3
,如圖
圓錐的體積為:
1
3
×(
3
)
3
π • CD+
1
3
×(
3
)
2
π •AD
=4π.
故答案為:4π
點(diǎn)評:本題是基礎(chǔ)題,考查旋轉(zhuǎn)體的體積,考查計(jì)算能力,正確求出兩個底面半徑、圓錐的高是本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠A=90°,∠B=60°,AB=1,若圓O的圓心在直角邊AC上,且與AB和BC所在的直線都相切,則圓O的半徑是(  )
A、
2
3
B、
1
2
C、
3
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

22、如圖,在Rt△ABC中,∠A=90°,以AB為直徑的半圓交BC于D,過D作圓的切線交AC于E.
求證:(1)AE=CE;(2)CD•CB=4DE2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠A=60°,∠C=90°,過點(diǎn)C做射線交斜邊AB于P,則CP<CA的概率是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Rt△ABC中,a、b、c三邊成G•P,∠c=90°,則sinA=
-1+
5
2
-1+
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,a、b為直角邊,c為斜邊,則c的外接圓半徑R=
 
,內(nèi)切圓半徑r=
 
,斜邊上的高為hc=
 
,斜邊被垂足分成兩線段之長為
 

查看答案和解析>>

同步練習(xí)冊答案