分析 (Ⅰ)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,結(jié)合x(chóng)∈[0,$\frac{π}{2}$],求得f(x)的值域.
(Ⅱ)由f($\frac{A}{2}$)=$\sqrt{3}$求得A的值,利用余弦定理求得bc的值,可得△ABC的面積S=$\frac{1}{2}$bc•sinA 的值.
解答 解:(Ⅰ)由題得,函數(shù)$f(x)=\sqrt{3}{cos^2}x+sinxcosx$=$\frac{\sqrt{3}}{2}$(1+cos2x)+$\frac{1}{2}$sin2x=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,
當(dāng)x∈[0,$\frac{π}{2}$]時(shí),2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],∴sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],
所以,f(x)的值域?yàn)閇0,1+$\frac{\sqrt{3}}{2}$].
(Ⅱ)因?yàn)閒($\frac{A}{2}$)=sin(A+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,∴sin(A+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,∴A+$\frac{π}{3}$=$\frac{2π}{3}$或$\frac{π}{3}$,∴A=$\frac{π}{3}$或0(舍去)
結(jié)合a=4,b+c=5,∴a2=b2+c2-2bc•cosA=(b+c)2-3bc=25-3bc=16,∴bc=3,
∴△ABC的面積S=$\frac{1}{2}$bc•sinA=$\frac{1}{2}$•3•$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的定義域和值域,余弦定理的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 38 | B. | 39 | C. | 18 | D. | 19 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com