分析 (1)當(dāng)x<0時(shí),-x>0,結(jié)合函數(shù)f(x)是R上的奇函數(shù),且當(dāng)x>0時(shí),函數(shù)的解析式為f(x)=log2(x+1),可得答案;
(2)根據(jù)f(0)=0及(1)中結(jié)論,可得分段函數(shù)形式的函數(shù)f(x)的解析式,進(jìn)而得到函數(shù)的圖象.
解答 解:(1)當(dāng)x<0時(shí),-x>0,
此時(shí)f(-x)=log2(-x+1).
又由函數(shù)f(x)是R上的奇函數(shù),
故f(x)=-f(-x)=-log2(-x+1).
(2)又∵定義在R上的奇函數(shù)f(x)滿(mǎn)足f(0)=0,
故f(x)=$\left\{\begin{array}{l}-{log}_{2}(-x+1),x<0\\ 0,x=0\\{log}_{2}(x+1),x>0\end{array}\right.$,
函數(shù)的圖象如下圖所示:
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,函數(shù)解析式的求法,函數(shù)的圖象,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$,$\frac{1}{6}$ | B. | $\frac{1}{2}$,$\frac{2}{3}$ | C. | $\frac{1}{6}$,$\frac{2}{3}$ | D. | $\frac{2}{3}$,$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?a∈R,函數(shù)f(x)和g(x)都是奇函數(shù) | B. | ?a∈R,函數(shù)f(x)和g(x)都是奇函數(shù) | ||
C. | ?a∈R,函數(shù)f(x)和g(x)都是偶函數(shù) | D. | ?a∈R,函數(shù)f(x)和g(x)都是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
醫(yī)生人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.2 | x | 0.2 | 0.04 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-5)∪(5,+∞) | B. | (-5,-2)∪(2,5) | C. | (-∞,-5)∪(-2,0) | D. | (-∞,-5)∪(-2,0)∪(2,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ①④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {m|m>$\frac{9}{4}$} | B. | {m|m≥$\frac{9}{4}$} | C. | {m|m<$\frac{9}{4}$} | D. | {m|m≤$\frac{9}{4}$} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com