【題目】為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到如下藥物效果與動(dòng)物試驗(yàn)列聯(lián)表:
患病 | 未患病 | 總計(jì) | |
服用藥 | 10 | 45 | 55 |
沒(méi)服用藥 | 20 | 30 | 50 |
總計(jì) | 30 | 75 | 105 |
經(jīng)過(guò)計(jì)算,,根據(jù)這一數(shù)據(jù)分析,下列說(shuō)法正確的是
臨界值表供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 有97.5%的把握認(rèn)為服藥情況與是否患病之間有關(guān)系
B. 有99%的把握認(rèn)為服藥情況與是否患病之間有關(guān)系
C. 有99.5%的把握認(rèn)為服藥情況與是否患病之間有關(guān)系
D. 沒(méi)有理由認(rèn)為服藥情況與是否患病之間有關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在斜三棱柱中,,平面底面,點(diǎn)、D分別是線段、BC的中點(diǎn).
(1)求證:;
(2)求證:AD//平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為,其離心率,且短軸的個(gè)端點(diǎn)與兩焦點(diǎn)組成的三角形面積為,過(guò)橢圓上的點(diǎn)作軸的垂線,垂足為,點(diǎn)滿足,設(shè)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若直線與曲線相切,且交橢圓于兩點(diǎn), ,記的面積為, 的面積為,求的最大值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,證明:函數(shù)是上的減函數(shù);
(Ⅱ)若曲線在點(diǎn)處的切線與直線平行,求的值;
(Ⅲ)若,證明: (其中…是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若存在,使得函數(shù)在區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮 讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)預(yù)測(cè)該路口 9月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)若從表中3、4月份分別抽取4人和2人,然后再?gòu)闹腥芜x2 人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來(lái)自同一月份的概率.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,函數(shù)在區(qū)間上的最大值是,最小值是,求的值;
(2)用定義法證明在其定義域上是減函數(shù);
(3)設(shè), 若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體中,為正方形,,二面角的余弦值為,且.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com