14.正三角形ABC的邊長(zhǎng)為1,點(diǎn)P、Q由點(diǎn)C出發(fā),分別沿線段CA、CB前進(jìn),CP與時(shí)間t(0<t≤1)的關(guān)系是|CP|=t2,CQ與時(shí)間t的關(guān)系是$|CQ|=\sqrt{t}$,記y為三角形CPQ的面積,則y的大致圖象是( 。
A.B.C.D.

分析 求出函數(shù)的解析式,利用冪函數(shù)的圖象,可得結(jié)論.

解答 解:0<t≤1,|CP|=t2,CQ與時(shí)間t的關(guān)系是$|CQ|=\sqrt{t}$,
∴y=$\frac{1}{2}{t}^{2}\sqrt{t}sin60°$=$\frac{\sqrt{3}}{4}{t}^{\frac{5}{2}}$,圖象的形狀是開(kāi)口向上的拋物線,
故選B.

點(diǎn)評(píng) 本題考查函數(shù)的解析式與圖象,考查冪函數(shù)圖象,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\sqrt{10}cosθ}\\{y=\sqrt{10}sinθ}\end{array}\right.$(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ+6sinθ.
(1)將曲線C1方程,將曲線C2極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)曲線C1,C2是否相交,若相交請(qǐng)求出公共弦的長(zhǎng),若不相交,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知平面向量$\overrightarrow{a}$=(1,-3),$\overrightarrow$=(4,-2)若λ$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,則λ=1    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某學(xué)校對(duì)手工社、攝影社兩個(gè)社團(tuán)招新報(bào)名的情況進(jìn)行調(diào)查,得到如下的2×2列聯(lián)表:
手工社攝影社總計(jì)
女生6
男生42
總計(jì)3060
(1)請(qǐng)?zhí)钌仙媳碇兴杖钡奈鍌(gè)數(shù)字;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為學(xué)生對(duì)這兩個(gè)社團(tuán)的選擇與“性別”有關(guān)系?
(注:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.對(duì)任意的實(shí)數(shù)R,集合A={x|x2+x-6>0},B={-1,0,1,2,3,4}.則B∩∁RA=( 。
A.{2,3,4,5}B.{-1,0}C.{-1,0,1,2}D.{ 2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.一機(jī)器可以按不同的速度運(yùn)轉(zhuǎn),其生產(chǎn)物件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)物件的多少,隨機(jī)器運(yùn)轉(zhuǎn)速度而變化,用x表示轉(zhuǎn)速(單位:轉(zhuǎn)/秒),用y表示每小時(shí)生產(chǎn)的有缺點(diǎn)物件的個(gè)數(shù),現(xiàn)觀測(cè)得到(x,y)的四組觀測(cè)值為(8,5),(12,8),(14,9),(16,11).已知y與x有很強(qiáng)的線性相關(guān)性,若實(shí)際生產(chǎn)中所允許的每小時(shí)有缺點(diǎn)的物件數(shù)不超過(guò)10,則機(jī)器的速度每秒不得超過(guò)多少轉(zhuǎn)?(精確到整數(shù))
參考公式:
若(x1,y1),…,(xn,yn)為樣本點(diǎn),$\widehat{y}$=$\widehat$x+$\widehat{a}$
$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi,$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若直線$\frac{x}{a}$+$\frac{y}$=1(a>0,b>0)過(guò)點(diǎn)(2,1),則a+2b的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一塊長(zhǎng)為a、寬為$\frac{a}{2}$的長(zhǎng)方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為x的小正方形,然后做成一個(gè)無(wú)蓋方盒.
(Ⅰ)試把方盒的容積V表示為x的函數(shù);
(Ⅱ)試求方盒容積V的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=x2-mx+1的兩個(gè)零點(diǎn)分別在區(qū)間(0,1)和(1,2),則實(shí)數(shù)m的取值范圍(2,$\frac{5}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案