7.已知遞增等比數(shù)列{an}的第3項,第5項,第7項的積為512,且這三項分別減去1,3,9后構(gòu)成一個等差數(shù)列,則數(shù)列an的公比為( 。
A.$±\sqrt{2}$B.$±\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

分析 利用等差數(shù)列與等比數(shù)列的通項公式、單調(diào)性即可得出.

解答 解:設(shè)遞增等比數(shù)列{an}的公比為q,∵第3項,第5項,第7項的積為512,且這三項分別減去1,3,9后構(gòu)成一個等差數(shù)列,
∴a3a5a7=${a}_{5}^{3}$=512,2(a5-3)=a3-1+a7-9,即2(a5-3)=$\frac{{a}_{5}}{{q}^{2}}$+${a}_{5}{q}^{2}$-10,
解得a5=8,2q4-5q2+2=0,
q2=$\frac{1}{2}$,或2.
q=$±\frac{\sqrt{2}}{2}$,$±\sqrt{2}$,
∵數(shù)列{an}為遞增的等比數(shù)列,∴q=$\sqrt{2}$.
故選:D.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=2cos2x+2sinxcosx+a(a∈R).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[$\frac{5π}{24}$,$\frac{3π}{4}$]時,f(x)的圖象與x軸恰好有兩個不同的交點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)cos(π+α)=$\frac{{\sqrt{3}}}{2}$(π<α<$\frac{3}{2}$π),那么cos(2π-α)的值是( 。
A.-$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有13名醫(yī)生,其中女醫(yī)生6人現(xiàn)從中抽調(diào)5名醫(yī)生組成醫(yī)療小組前往災(zāi)區(qū),若醫(yī)療小組至少有2名男醫(yī)生,同時至多有3名女醫(yī)生,設(shè)不同的選派方法種數(shù)為N,則下列等式:
①C135-C71C64;②C72C63+C73C62+C74C61+C75;  ③C135-C71C64-C65;   ④C72C113;
其中能成為N的算式是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x∈(-π,0),cosx=$\frac{4}{5}$,則tan2x=( 。
A.$\frac{7}{24}$B.$-\frac{7}{24}$C.$\frac{24}{7}$D.$-\frac{24}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為單位向量,其中$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$在$\overrightarrow$上的投影為2,則$\overrightarrow{a}$•$\overrightarrow$=2,$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.點C(4a+1,2a+1,2)在點P(1,0,0)、A(1,-3,2)、B(8,-1,4)確定的平面上,則a=$\frac{14}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點A(1,2),B(-2,3),直線l:y=k(x+4)與線段AB有公共點(線段AB包括端點),則k的取值范圍是[$\frac{2}{5}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,在直角梯形EFBC中,F(xiàn)B∥EC,BF⊥EF,且EF=$\frac{1}{2}$FB=$\frac{1}{3}$EC=1,A為線段FB的中點,AD⊥EC于D,沿邊AD將四邊形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點,如圖2.
(I)求證:BC⊥平面EDB;
(Ⅱ)求直線AM與平面BEF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案