分析 由已知得f(-1)=1-2-1=$\frac{1}{2}$,從而f[f(-1)]=f($\frac{1}{2}$),由此能求出結果.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{{x}^{\frac{1}{2}},x>0}\end{array}\right.$,
f(-1)=1-2-1=$\frac{1}{2}$,
f[f(-1)]=f($\frac{1}{2}$)=$(\frac{1}{2})^{\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.
點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | i | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[0,1) | 10 | 0.1 |
[1,2) | a | 0.2 |
[2,3) | 30 | 0.3 |
[3,4) | 20 | b |
[4,5) | 10 | 0.1 |
[5,6) | 10 | 0.1 |
合計 | 100 | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{3\sqrt{3}-4}}{10}$ | B. | $\frac{{3\sqrt{3}+4}}{10}$ | C. | $\frac{{3-4\sqrt{3}}}{10}$ | D. | $\frac{{3+4\sqrt{3}}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com