5.已知z=$\frac{i}{1+i}$-$\frac{1}{2i}$(i是虛數(shù)單位).那么復(fù)數(shù)z的虛部為(  )
A.$\frac{1}{2}$B.iC.1D.-1

分析 利用復(fù)數(shù)的運算法則、虛部的定義即可得出.

解答 解:z=$\frac{i}{1+i}$-$\frac{1}{2i}$=$\frac{i(1-i)}{(1+i)(1-i)}$-$\frac{-i}{2i(-i)}$=$\frac{i+1+i}{2}$=$\frac{1}{2}$+i,
那么復(fù)數(shù)z的虛部為1.
故選:C.

點評 本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.衡州中學(xué)有教師150人,其中高級教師15人,中級教師90人,現(xiàn)按職稱分層抽樣選出30名教師參加教職工代表大會,則選出的高、中、初級教師的人數(shù)分別為( 。
A.5,10,15B.3,18,9C.3,10,17D.5,9,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.現(xiàn)有一半球形原料,若通過切削將該原料加工成一正方體工件,則所得工件體積與原料體積之比的最大值為$\frac{{\sqrt{6}}}{3π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足(3+4i)z=5,則z的虛部為(  )
A.-4B.$-\frac{4}{5}$C.$\frac{4}{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=x2在x=1處的切線與兩坐標(biāo)軸圍成的三角形的面積為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不等式組$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y+2≤0}\\{x+y-4≤0}\end{array}\right.$的解集記作D,實數(shù)x,y滿足如下兩個條件:①?(x,y)∈D,y≥ax;②?(x,y)∈D,x-y≤a.則實數(shù)a的取值范圍為( 。
A.[-2,1]B.[0,1]C.[-2,3]D.[0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,則C的漸近線方程為(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{3}$xC.y=±2xD.y=±$\sqrt{5}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.平面內(nèi)動點P到兩點A、B距離之比為常數(shù)λ(λ>0,λ≠1),則動點P的軌跡叫做阿波羅尼斯圓,若已知A(-2,0),B(2,0),λ=$\frac{1}{2}$,則此阿波尼斯圓的方程為( 。
A.x2+y2-12x+4=0B.x2+y2+12x+4=0C.x2+y2-$\frac{20}{3}$x+4=0D.x2+y2+$\frac{20}{3}$x+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{{x}^{\frac{1}{2}},x>0}\end{array}\right.$,則f[f(-1)]=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案