A. | [2,10] | B. | [$\sqrt{2}$,$\sqrt{10}$] | C. | (2,10) | D. | [2,10) |
分析 由g(x)=f(x)-logax=0,得f(x)=logax,分別作出函數(shù)f(x)和y=logax的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:當x∈[0,2]時,f(x)=4(1-|x-1|),
當n=2時,x∈[2,6],此時$\frac{x}{2}$-1∈[0,2],則f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1)=$\frac{1}{2}$×4(1-|$\frac{x}{2}$-1-1|)=2(1-|$\frac{x}{2}$-2|),
當n=3時,x∈[6,14],此時$\frac{x}{2}$-1∈[2,6],則f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1)=$\frac{1}{2}$×2(1-|$\frac{x}{4}$-$\frac{5}{2}$|)=1-|$\frac{x}{4}$-$\frac{5}{2}$|,
由g(x)=f(x)-logax=0,得f(x)=logax,分別作出函數(shù)f(x)和y=logax的圖象,
若0<a<1,則此時兩個函數(shù)圖象只有1個交點,不滿足條件.
若a>1,當對數(shù)函數(shù)圖象經(jīng)過A時,兩個圖象只有2個交點,當圖象經(jīng)過點B時,兩個函數(shù)有4個交點,
則要使兩個函數(shù)有3個交點,則對數(shù)函數(shù)圖象必須在A點以下,B點以上,
∵f(4)=2,f(10)=1,∴A(4,2),B(10,1),
即滿足$\left\{\begin{array}{l}{lo{g}_{a}4<f(4)}\\{lo{g}_{a}10>f(10)}\end{array}\right.$,
即$\left\{\begin{array}{l}{lo{g}_{a}4<2}\\{lo{g}_{a}10>1}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}^{2}>4}\\{a<10}\end{array}\right.$,
即2<a<10,
故選:C.
點評 本題主要考查分段函數(shù)的應用,利用函數(shù)零點和方程之間的關(guān)系,將條件轉(zhuǎn)化為兩個函數(shù)交點問題,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強,有一點的難度.
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∨(¬q) | C. | (¬p)∧q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 405 | B. | 810 | C. | 243 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com