1.在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上隨機取一個數(shù)x,則(sinx-cosx)∈[-$\sqrt{2}$,-1]的概率是$\frac{3}{4}$.

分析 先化簡不等式,確定滿足(sinx-cosx)∈[-$\sqrt{2}$,-1]且在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]內(nèi)x的范圍,根據(jù)幾何概型利用長度之比可得結(jié)論.

解答 解:∵(sinx-cosx)∈[-$\sqrt{2}$,-1],
∴-$\sqrt{2}$≤$\sqrt{2}$sin(x-$\frac{π}{4}$)≤-1,
∵x∈[-$\frac{π}{2}$,$\frac{π}{6}$],∴x∈[-$\frac{π}{2}$,0],長度為$\frac{π}{2}$
∵區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]的長度為$\frac{π}{6}$+$\frac{π}{2}$=$\frac{2}{3}π$,
∴(sinx-cosx)∈[-$\sqrt{2}$,-1]的概率是$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點評 本題考查幾何概型,考查三角函數(shù)的化簡,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.在△ABC中,a,b,c分別為角A,B,C的對邊,若asinAsinB+bcos2A=$\sqrt{3}$a,則$\frac{a}$=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知△ABC中,BC=6,AC=8,cosC=$\frac{75}{96}$,則△ABC的形狀是( 。
A.銳角三角形B.直角三角形C.等腰三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.數(shù)列{an}的前n項和為Sn,若an=$\frac{1}{n(n+1)}$,則S4=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等差數(shù)列{an}的前n項和為Sn,且Sn-an=n2-n,n∈N+
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=$\left\{\begin{array}{l}{\frac{1}{\sqrt{n-1}+\sqrt{n+1}}(n=2k-1)}\\{\frac{1}{{a}_{\frac{n}{2}}{a}_{\frac{n}{2}+1}}(n=2k)}\end{array}\right.$(k∈N+),數(shù)列{bn}的前n項和為Tn,求T2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$,則f(f(-2))=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知公差不為0等差數(shù)列{an}滿足:a1,a2,a7成等比數(shù)列,a3=9.
(1)求{an}的通項公式;
(2)若數(shù)列{an}的前n項和Sn,求數(shù)列{$\frac{{S}_{n}}{n}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.$\overrightarrow a$=(x-1,y),$\overrightarrow b$=(1,2),且$\overrightarrow a$⊥$\overrightarrow b$,則當x>0,y>0時,$\frac{1}{x}$+$\frac{1}{y}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓C1:(x-2$\sqrt{3}$)2+(y-1)2=4,直線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\sqrt{3}t}\\{y=-\sqrt{3}}+t\end{array}\right.$(t≠0),以坐標原點O為極點,x軸的正半軸為極軸建立坐標系,兩坐標系取相同單位.
(1)求C1,C2的極坐標方程;
(2)設C2向左平移1個單位后與C1的交點為M,N,求MN的中點到直線C3的極坐標方程θ=$\frac{π}{3}$的最小距離.

查看答案和解析>>

同步練習冊答案