16.已知等差數(shù)列{an}的前n項和為Sn,且Sn-an=n2-n,n∈N+
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\left\{\begin{array}{l}{\frac{1}{\sqrt{n-1}+\sqrt{n+1}}(n=2k-1)}\\{\frac{1}{{a}_{\frac{n}{2}}{a}_{\frac{n}{2}+1}}(n=2k)}\end{array}\right.$(k∈N+),數(shù)列{bn}的前n項和為Tn,求T2016

分析 (1)Sn-an=n2-n,n∈N+.分別令n=2,n=3,解得a1,a2.根據(jù)數(shù)列{an}是等差數(shù)列,可得公差d=a2-a1,即可得出an
(2)由(1)可知,$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2n•(2n+2)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,$\frac{1}{\sqrt{n-1}+\sqrt{n+1}}$=$\frac{\sqrt{n+1}-\sqrt{n-1}}{2}$,利用分組求和、“裂項求和”方法即可得出.

解答 解:(1)Sn-an=n2-n,n∈N+
令n=2,得a1=22-2=2;令n=3,解得a2=4.
∵數(shù)列{an}是等差數(shù)列,∴公差d=4-2=2,
∴an=2+2(n-1)=2n.
(2)由(1)可知,$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2n•(2n+2)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
又$\frac{1}{\sqrt{n-1}+\sqrt{n+1}}$=$\frac{\sqrt{n+1}-\sqrt{n-1}}{2}$,
∴T2016=$\frac{1}{2}[(\sqrt{2}-1)+(\sqrt{4}-\sqrt{2})$+…+$(\sqrt{2016}-\sqrt{2014})]$+$\frac{1}{4}$$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{1008}-\frac{1}{1009})]$
=$\frac{1}{2}(\sqrt{2016}-1)$+$\frac{1}{4}(1-\frac{1}{1009})$
=$6\sqrt{14}+\frac{252}{1009}$-$\frac{1}{2}$
=6$\sqrt{14}$-$\frac{505}{2018}$.

點評 本題考查了等差數(shù)列的通項公式、遞推關(guān)系、分組求和、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等式組$\left\{\begin{array}{l}{x+y-2≥0}\\{x+2y-4≤0}\\{x+3y-2≥0}\end{array}\right.$表示的平面區(qū)域的面積為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.分解因式:(x-1)(x-2)(x-3)(x-4)-24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1交于A、B兩點,現(xiàn)取AB的中點M在第一象限,并且在拋物線y2=4x上,M到拋物線焦點的距離為2,則直線l的斜率為( 。
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的兩條相鄰的對稱軸之間的距離為$\frac{π}{2}$.若角φ的終邊經(jīng)過點P(-1,2),則f($\frac{5π}{4}$)=( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{2\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上隨機(jī)取一個數(shù)x,則(sinx-cosx)∈[-$\sqrt{2}$,-1]的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)y=x3+x2+x+1在點M(1,4)處的切線為l,雙曲線$\frac{x^2}{8}$-$\frac{y^2}{2}$=1的兩條漸近線與l圍成的封閉圖形的區(qū)域為P(包括邊界),點A為區(qū)域P內(nèi)的任一點,已知B(4,5),O為坐標(biāo)原點,則$\overrightarrow{OA}$•$\overrightarrow{OB}$的最大值為( 。
A.$\frac{23}{12}$B.3C.2D.$\frac{26}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知隨機(jī)變量x的分布列為
x01234
P0.10.20.40.20.1
則隨機(jī)變量x的方差為1.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2-a)x+1(x<1)}\\{{a}^{x}(x≥1)}\end{array}\right.$在(-∞,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是[$\frac{3}{2}$,2).

查看答案和解析>>

同步練習(xí)冊答案