Loading [MathJax]/jax/output/CommonHTML/jax.js
14.設(shè)集合A=[0,1),B=[1,2],函數(shù)f(x)=\left\{\begin{array}{l}x+\frac{1}{2},x∈A\\ 2({1-x}),x∈B\end{array},若x0∈A,且f[f(x0)]∈A,則x0的取值為12

分析 由已知得0≤x0<1,從而fx0=x0+12∈[12,32),由f(x0)∈[121)和f(x0)∈[132)兩種情況分類(lèi)討論經(jīng),能求出x0的取值.

解答 解:∵集合A=[0,1),B=[1,2],
函數(shù)f(x)=\left\{\begin{array}{l}x+\frac{1}{2},x∈A\\ 2({1-x}),x∈B\end{array},x0∈A,且f[f(x0)]∈A,
∴0≤x0<1,∴fx0=x0+12∈[12,32),
當(dāng)f(x0)∈[121)時(shí),即x0∈[0,12)時(shí),
f[f(x0)]=f(x0+12)=x0+1∈[1,2),
∵f[f(x0)]∈A,∴x0+1∈[0,1),不成立;
當(dāng)f(x0)∈[132)時(shí),即x0∈[12,1)時(shí),
f[f(x0)]=f(x0+12)=2(1-x012)=1-2x0,
∵f[f(x0)]∈A,即1-2x0∈[0,1),
由x0∈[12,1),得1-2x0∈(-1,0],
∴1-2x0=0,解得x0=12
綜上,x0=0.
故答案為:12

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知點(diǎn)A(-1,1),B(1,2),C(-2,-1),D(2,2),則向量ABCD方向上的投影為115

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=-n3x3-12x2+2mx.
(1)若m=3,n=1,求f(x)的極值;
(2)若n=-1,-2<m<0,f(x)在[1,4]上的最大值為163,求f(x)在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.方程x2+4x3=ax+a由兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為[0,24).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求|PM|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線的漸近線方程為y=±34x,則此雙曲線的( �。�
A.焦距為10B.實(shí)軸長(zhǎng)與虛軸長(zhǎng)分別為8與6
C.離心率e只能是5453D.離心率e不可能是5453

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)的定義域?yàn)镽,周期為1,當(dāng)0≤x<1時(shí)f(x)=x,若函數(shù)f(x)的圖象與gx=2x2+k的圖象只有一個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( �。�
A.[1641]B.[181]C.1641D.181

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知x>1,比較x3+6x與x2+6的大�。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-n(n∈N*).
(1)求證:數(shù)列{an+1}成等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在連續(xù)三項(xiàng)可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案