9.已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求|PM|的最小值.

分析 (1)當(dāng)截距不為0時(shí),根據(jù)圓C的切線在x軸和y軸的截距相等,設(shè)出切線方程x+y=a,然后利用點(diǎn)到直線的距離公式求出圓心到切線的距離d,讓d等于圓的半徑r,列出關(guān)于a的方程,求出方程的解即可得到a的值,得到切線的方程;當(dāng)截距為0時(shí),設(shè)出切線方程為y=kx,同理列出關(guān)于k的方程,求出方程的解即可得到k的值,得到切線的方程;
(2)根據(jù)圓切線垂直于過切點(diǎn)的半徑,得到三角形CPM為直角三角形,根據(jù)勾股定理表示出點(diǎn)P的軌跡方程,由軌跡方程得到動(dòng)點(diǎn)P的軌跡為一條直線,所以|PM|的最小值就是|PO|的最小值,求出原點(diǎn)到P軌跡方程的距離即為|PO|的最小值.

解答 解:(1)∵切線在兩坐標(biāo)軸上的截距相等,∴當(dāng)截距不為零時(shí),設(shè)切線方程為x+y=a,
又∵圓C:(x+1)2+(y-2)2=2,∴圓心C(-1,2)到切線的距離等于圓的半徑$\sqrt{2}$,
即$\frac{|-1+2-a|}{\sqrt{2}}$=$\sqrt{2}$,解得:a=-1或a=3,
當(dāng)截距為零時(shí),設(shè)y=kx,同理可得k=2$±\sqrt{6}$,
則所求切線的方程為x+y+1=0或x+y-3=0或y=(2$±\sqrt{6}$)x---------(6分)
(2)∵切線PM與半徑CM垂直,∴|PM|2=|PC|2-|CM|2
∴(x1+1)2+(y1-2)2-2=x12+y12.∴2x1-4y1+3=0.
∴動(dòng)點(diǎn)P的軌跡是直線2x-4y+3=0.∴|PM|的最小值就是|PO|的最小值.
而|PO|的最小值為原點(diǎn)O到直線2x-4y+3=0的距離d=$\frac{3}{\sqrt{4+16}}$=$\frac{3\sqrt{5}}{10}$.--(12分)

點(diǎn)評(píng) 此題考查學(xué)生掌握直線與圓相切時(shí)所滿足的條件,會(huì)根據(jù)條件求動(dòng)點(diǎn)的軌跡方程,靈活運(yùn)用兩點(diǎn)間的距離公式化簡(jiǎn)求值,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若關(guān)于x的不等式|3x+2|+|3x-1|-t≥0的解集為R,記實(shí)數(shù)t的最大值為a.
(1)求a;
(2)若正實(shí)數(shù)m,n滿足4m+5n=a,求$y=\frac{1}{m+2n}+\frac{4}{3m+3n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.當(dāng)x>2時(shí),不等式x2-ax+9>0恒成立,則實(shí)數(shù)a的取值范圍為(-∞,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)f(x)是定義在R上的函數(shù),滿足f(x)=f(4-x),且對(duì)任意x1,x2∈(0,+∞),都有(x1-x2)[f(x1+2)-f(x2+2)]>0,則滿足f(2-x)=f($\frac{3x+11}{x+4}$)的所有x的和為( 。
A.-3B.-5C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{lo{g}_{2}x}$+$\sqrt{16-{4}^{x-1}}$.
(1)求f(x)的定義域A;
(2)若函數(shù)g(x)=x2+ax+b的零點(diǎn)為-1.5,當(dāng)x∈A時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)集合A=[0,1),B=[1,2],函數(shù)f(x)=$\left\{\begin{array}{l}x+\frac{1}{2},x∈A\\ 2({1-x}),x∈B\end{array}$,若x0∈A,且f[f(x0)]∈A,則x0的取值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知一個(gè)圓錐的正視圖和側(cè)視圖都是邊長(zhǎng)為1的正三角形,則它的俯視圖的面積是(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.一個(gè)棱長(zhǎng)為6的正四面體紙盒內(nèi)放一個(gè)正方體,若正方體可以在紙盒內(nèi)任意轉(zhuǎn)動(dòng),則正方體棱長(zhǎng)的最大值為( 。
A.3B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.以(1,0),(-1,0)為焦點(diǎn)的橢圓與y=x-2有公共點(diǎn),則該橢圓離心率的最大值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案