19.在(x2-4)(x+$\frac{1}{x}$)9的展開式中x5的系數(shù)為(  )
A.36B.-144C.60D.-60

分析 把(x+$\frac{1}{x}$)9 按照二項(xiàng)式定理展開,即可求得(x2-4)(x+$\frac{1}{x}$)9的展開式中x5的系數(shù).

解答 解:∵(x2-4)(x+$\frac{1}{x}$)9 =(x2-4)(${C}_{9}^{0}$•x9+${C}_{9}^{1}$•x7+${C}_{9}^{2}$x5+${C}_{9}^{3}$•x3+…+${C}_{9}^{9}$•x-9),
故展開式中x5的系數(shù)為${C}_{9}^{3}$-4${C}_{9}^{2}$=84-144=-60,
故選:D.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{x+1}{e^x}$,A(x1,m),B(x2,m)是曲線y=f(x)上兩個(gè)不同的點(diǎn).
(Ⅰ)求f(x)的單調(diào)區(qū)間,并寫出實(shí)數(shù)m的取值范圍;
(Ⅱ)證明:x1+x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)樣本a,3,5,7的平均數(shù)是b,且a,b分別是數(shù)列{2n-2}(n∈N*)的第2項(xiàng)和第4項(xiàng),則這個(gè)樣本的方差是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=xlnx.
(Ⅰ)設(shè)函數(shù)g(x)=$\frac{f(x)}{x-1}$,求g(x)的單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=t有兩個(gè)不相等的實(shí)數(shù)根x1,x2,求證:x1+x2$>\frac{2}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)滿足下列條件:①定義域?yàn)閇1,+∞);②當(dāng)1<x≤2時(shí)f(x)=4sin($\frac{π}{2}$x);③f(x)=2f(2x).若關(guān)于x的方程f(x)-kx+k=0恰有3個(gè)實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是( 。
A.$[\frac{1}{14},\frac{1}{3})$B.$(\frac{1}{14},\frac{1}{3}]$C.$(\frac{1}{3},2]$D.$[\frac{1}{3},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合$A=\{x|{(\frac{1}{2})^x}≤1\}$,B={x|x2-2x-8≤0},則A∩B=( 。
A.{x|-2≤x≤0}B.{x|2≤x≤4}C.{x|0≤x≤4}D.{x|x≤-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{a}{e^x}+lnx$.(a∈R)
(Ⅰ)若函數(shù)在區(qū)間$[\frac{1}{e},\;e]$上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(Ⅱ)試討論函數(shù)f(x)在區(qū)間(0,+∞)內(nèi)極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.21個(gè)人按照以下規(guī)則表演節(jié)目:他們圍坐一圈,按順序從1到3循環(huán)報(bào)數(shù),報(bào)數(shù)字“3”的人出來表演節(jié)目,并且表演過的人不再參加報(bào)數(shù),那么在僅剩兩個(gè)人沒有表演過節(jié)目的時(shí)候,共報(bào)數(shù)的次數(shù)為(  )
A.19B.38C.51D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點(diǎn)P在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上,其左、右焦點(diǎn)分別為F1,F(xiàn)2,直線PF1與以坐標(biāo)原點(diǎn)O為圓心,a為半徑的圓相切于點(diǎn)A,線段PF1的垂直平分線恰好過點(diǎn)F2,則$\frac{{S}_{△O{F}_{1}A}}{{S}_{△P{F}_{1}{F}_{2}}}$的值為( 。
A.$\frac{1}{7}$B.$\frac{2}{9}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案