分析 若關于x,y的二元一次方程組$\left\{\begin{array}{l}{ax+4y=a+2}\\{x+ay=a}\end{array}\right.$無解,則直線ax+4y-(a+2)=0與x+ay-a=0平行,即$\left\{\begin{array}{l}{a}^{2}-4=0\\-{a}^{2}+(a+2)≠0\end{array}\right.$,解得答案.
解答 解:若關于x,y的二元一次方程組$\left\{\begin{array}{l}{ax+4y=a+2}\\{x+ay=a}\end{array}\right.$無解,
則直線ax+4y-(a+2)=0與x+ay-a=0平行,
即$\left\{\begin{array}{l}{a}^{2}-4=0\\-{a}^{2}+(a+2)≠0\end{array}\right.$,
解得:a=-2,
故答案為:-2
點評 本題考查的知識點是根的存在性及個數(shù)判斷,難度中檔.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2000 | B. | 2800 | C. | 3000 | D. | 6000 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π+$\frac{4}{3}$ | B. | $\frac{π}{3}$+4 | C. | $\frac{2}{3}$π+$\frac{4}{3}$ | D. | $\frac{2}{3}$π+4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com