分析 利用定義判斷函數(shù)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性把恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)最值問(wèn)題解決.
解答 解:對(duì)于?x1>x2,
f(x1)-f(x2)=f(x2+x1-x2)-f(x2)
=f(x2)[f(x1-x2)-1],
又x1-x2>0,所以f(x1-x2)<1,從而f(x1)-f(x2)<0,
所以f(x)在R上單調(diào)遞減.
f(0)•f(0)=f(0+0)得f(0)=1或0(舍),f(-1)•f(1)=f(-1+1)得f(-1)=2,從而f(-2)=4,所以原不等式f(a)•f(-2-xex)-4>0
等價(jià)于f(a-2-xex)>f(-2)
所以a-2-xex<-2即a<xex恒成立,
令t=xex,t'=ex(1+x),
當(dāng)x>-1時(shí),函數(shù)遞增,當(dāng)x<-1時(shí),函數(shù)遞減,
所以當(dāng)x=1時(shí),函數(shù)取最小值為-$\frac{1}{e}$,
所以a<-$\frac{1}{e}$.
故答案為(-∞,-$\frac{1}{e}$).
點(diǎn)評(píng) 考查了抽象函數(shù)的單調(diào)性判斷和恒成立問(wèn)題的轉(zhuǎn)化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com