1.已知函數(shù)$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}(a+1){x^2}-(a+2)x+6$的極大值是f(-3)=15,
(1)是否存在極小值?若存在求出極小值.若不存在說明理由;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

分析 (1)利用函數(shù)的極大值求出a,然后求解函數(shù)的導(dǎo)數(shù),求出極值點,判斷單調(diào)性求出極小值.
(2)利用(1)直接求解函數(shù)的單調(diào)區(qū)間即可.

解答 解:(1)函數(shù)$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}(a+1){x^2}-(a+2)x+6$的極大值是f(-3)=15,即y極大值=f(-3)=15,
可得-9a+$\frac{9}{2}$(a+1)+3(a+2)+6=15,
得a=1.…(2分),
f(x)=$\frac{1}{3}{x}^{3}$+x2-3x+6
得y′=x2+2x-3,
令y′=0,得x=-3,或x=1,…(4分)  x∈(-3,1)時,y′<0,函數(shù)是減函數(shù),x∈(1,+∞)時,y′>0,函數(shù)是
增函數(shù),
x=1時,函數(shù)取得極小值,
 ${y_{極小值}}=f(1)=\frac{13}{3}$,…(8分)
(2)由(1)可知函數(shù)的增區(qū)間為:(-∞,-3)和(1,+∞),減區(qū)間為:(-3,1).…(12分).

點評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值以及函數(shù)的單調(diào)性的求法,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知tanα=-3,借助三角函數(shù)定義求sinα和cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.點P所在軌跡的極坐標方程為ρ=2cosθ,點Q所在軌跡的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=4+2t}\end{array}\right.$(t為參數(shù)),則|PQ|的最小值是( 。
A.2B.$\frac{4\sqrt{5}}{5}$+1C.1D.$\frac{4\sqrt{5}}{5}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=3+cost}\\{y=sint}\end{array}\right.$,0≤t$≤\frac{π}{2}$,C2的極坐標方程為3ρsinθ-ρcosθ-1=0,則C1和C2的公共點的個數(shù)為0個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=x3-3x-a,當x∈[0,3]上時,m≤f(x)≤n恒成立,則n-m的最小值為( 。
A.2B.4C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足下列公式,寫出它們的前5項:
(1)an=(-1)n(n2+1),
(2)a1=1,an=1+$\frac{1}{{{a_{n-1}}}}$(n>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-ax+3在區(qū)間(-∞,2)上是減函數(shù),在區(qū)間[2,+∞)上是增函數(shù).
(1)求a的值;
(2)求f(x)在區(qū)間[0,3]上的值域;
(3)求f(x)在區(qū)間[0,m](m>0)上的最大值g(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某公司為確定下一年投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年利潤y(單位:萬元)的影響,對近5年的宣傳費xi和年利潤yi(i=1,2,3,4,5)進行了統(tǒng)計,列出了下表:
x(單位:千元)2471730
y(單位:萬元)12345
員工小王和小李分別提供了不同的方案.
(1)小王準備用線性回歸模型擬合y與x的關(guān)系,請你建立y關(guān)于x的線性回歸方程(系數(shù)精確到0.01);
(2)小李決定選擇對數(shù)回歸模擬擬合y與x的關(guān)系,得到了回歸方程:$\widehat{y}$=1.450lnx+0.024,并提供了相關(guān)指數(shù)R2=0.995,請用相關(guān)指數(shù)說明選擇哪個模型更合適,并預(yù)測年宣傳費為4萬元的年利潤(精確到0.01)(小王也提供了他的分析數(shù)據(jù)$\sum_{i=1}^{5}$(yi-$\widehat{y}$i2=1.15)
參考公式:相關(guān)指數(shù)R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中斜率和截距的最小二乘法估計公式分別為$\widehat$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x,參考數(shù)據(jù):ln40=3.688,${\sum_{i=1}^5{({x_i}-\overline x)}^2}$=538.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線y=2x-2被圓(x-2)2+(y-2)2=25所截得的弦長為(  )
A.6B.8C.10D.12

查看答案和解析>>

同步練習(xí)冊答案