A. | $\sqrt{2}+1$ | B. | $\sqrt{7}+1$ | C. | $\sqrt{2}$-1 | D. | $\sqrt{7}$-1 |
分析 設(shè)點(diǎn)M的坐標(biāo)是(x,y),由兩點(diǎn)之間的距離公式化簡(jiǎn)|$\overrightarrow{CM}$|=1,判斷出動(dòng)點(diǎn)M的軌跡,由向量的坐標(biāo)運(yùn)算求出$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$,表示出|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$|并判斷幾何意義,轉(zhuǎn)化為圓外一點(diǎn)與圓上點(diǎn)的距離最值問題,即可求出答案.
解答 解:設(shè)點(diǎn)M的坐標(biāo)是(x,y),
∵C(0,-2),且|$\overrightarrow{CM}$|=1,
∴$\sqrt{{x}^{2}+(y+2)^{2}}=1$,則x2+(y+2)2=1,
即動(dòng)點(diǎn)M的軌跡是以C為圓心、1為半徑的圓,
∵A(0,1),B(1,0),
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$=(x+1,y+1),
則|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$|=$\sqrt{(x+1)^{2}+(y+1)^{2}}$,幾何意義表示:
點(diǎn)M(x,y)與點(diǎn)A(-1,-1)之間的距離,即圓C上的點(diǎn)與點(diǎn)A(-1,-1)的距離,
∵點(diǎn)A(-1,-1)在圓C外部,
∴|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$|的最大值是|AC|+1=$\sqrt{(0+1)^{2}+(-2+1)^{2}}$+1=$\sqrt{2}+1$,
故選A.
點(diǎn)評(píng) 本題考查向量的坐標(biāo)運(yùn)算、向量的模,動(dòng)點(diǎn)的軌跡以及軌跡方程,兩點(diǎn)之間的距離公式,以及圓外一點(diǎn)與圓上點(diǎn)的距離最值問題,考查轉(zhuǎn)化思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{π}{6}$,0)對(duì)稱 | B. | 函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{12}$,0)對(duì)稱 | ||
C. | 函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱 | D. | 函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{12}$對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 21 | B. | 22 | C. | 23 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com