16.某科技博覽會(huì)展出的智能機(jī)器人有 A,B,C,D 四種型號(hào),每種型號(hào)至少有 4 臺(tái).要求每 位購(gòu)買(mǎi)者只能購(gòu)買(mǎi)1臺(tái)某種型號(hào)的機(jī)器人,且購(gòu)買(mǎi)其中任意一種型號(hào)的機(jī)器人是等可能的.現(xiàn)在有 4 個(gè)人要購(gòu)買(mǎi)機(jī)器人.
(Ⅰ)在會(huì)場(chǎng)展覽臺(tái)上,展出方已放好了 A,B,C,D 四種型號(hào)的機(jī)器人各一臺(tái),現(xiàn)把他們 排成一排表演節(jié)目,求 A 型與 B 型相鄰且 C 型與 D 型不相鄰的概率;
(Ⅱ)設(shè)這 4 個(gè)人購(gòu)買(mǎi)的機(jī)器人的型號(hào)種數(shù)為ξ,求ξ 的分布列和數(shù)學(xué)期望.

分析 (I) 四中機(jī)器人的總的排序?yàn)?{A}_{4}^{4}$,A 型與 B 型相鄰且 C 型與 D 型不相鄰只能是C、AB、D,或C、BA、D,C,D也可以交換.
(II)ξ的可能取值為1,2,3,4.P(ξ=1)=$\frac{{A}_{4}^{1}}{{4}^{4}}$,P(ξ=2)=$\frac{{∁}_{4}^{2}({2}^{4}-2)}{{4}^{4}}$,P(ξ=4)=$\frac{{A}_{4}^{4}}{{4}^{4}}$,P(ξ=3)=$\frac{{∁}_{4}^{3}{∁}_{4}^{2}{A}_{3}^{3}}{{4}^{4}}$,即可得出.

解答 解:(I) A 型與 B 型相鄰且 C 型與 D 型不相鄰只能是C、AB、D,或C、BA、D,C,D也可以交換.
因此概率P=$\frac{{A}_{2}^{2}•{A}_{2}^{2}}{{A}_{4}^{4}}$=$\frac{1}{6}$.
(II)ξ的可能取值為1,2,3,4.
P(ξ=1)=$\frac{{A}_{4}^{1}}{{4}^{4}}$=$\frac{4}{256}$,P(ξ=2)=$\frac{{∁}_{4}^{2}({2}^{4}-2)}{{4}^{4}}$=$\frac{84}{256}$,P(ξ=4)=$\frac{{A}_{4}^{4}}{{4}^{4}}$=$\frac{24}{256}$,P(ξ=3)=$\frac{{∁}_{4}^{3}{∁}_{4}^{2}{A}_{3}^{3}}{{4}^{4}}$=.$\frac{144}{256}$

 ξ 1 2 3 4
 P $\frac{4}{256}$ $\frac{84}{256}$ $\frac{144}{256}$ $\frac{24}{256}$
∴E(ξ)=1×$\frac{4}{256}$+2×$\frac{84}{256}$+4×$\frac{24}{256}$+3×$\frac{144}{256}$=$\frac{175}{64}$.

點(diǎn)評(píng) 本題考查了排列與組合的計(jì)算公式、相互獨(dú)立事件的概率計(jì)算公式、隨機(jī)變量的分布列與數(shù)學(xué)期望,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(0,1),B(1,0),C(0,-2),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足|$\overrightarrow{CM}$|=1,則|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$|的最大值是(  )
A.$\sqrt{2}+1$B.$\sqrt{7}+1$C.$\sqrt{2}$-1D.$\sqrt{7}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用A、B兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺(jué)性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績(jī),得到莖葉圖如圖:
(1)學(xué)校規(guī)定:成績(jī)不得低于85分的為優(yōu)秀,請(qǐng)?zhí)顚?xiě)如表的2×2列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)?”
甲班乙班合計(jì)
優(yōu)秀
不優(yōu)秀
合計(jì)
下面臨界值表僅供參考:
P(k2≥k)0.150.100.050.0250.100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)現(xiàn)從甲班高等數(shù)學(xué)成績(jī)不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{x≥0}\\{x-2y≥0}\\{y≥x-1}\end{array}\right.$,則z=ax+y(a>0)的最小值為( 。
A.0B.aC.2a+1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某校為了解校園安全管理專(zhuān)項(xiàng)活動(dòng)的成效,對(duì)全校3000名學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“優(yōu)秀”、“良好”、“及格”、“不及格”四個(gè)等級(jí),現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示.
 等級(jí) 不及格 及格 良好 優(yōu)秀
 得分[70,90)[90,110)[110,130)[130,150]
 頻數(shù) 6 a 24 b
(Ⅰ)求a,b,c的值;
(Ⅱ)試估計(jì)該校安全意識(shí)測(cè)試評(píng)定為“優(yōu)秀”的學(xué)生人數(shù);
(Ⅲ)已知已采用分層抽樣的方法,從評(píng)定等級(jí)為“優(yōu)秀”和“良好”的學(xué)生中任選6人進(jìn)行強(qiáng)化培訓(xùn),現(xiàn)再?gòu)倪@6人中任選2人參加市級(jí)校園安全知識(shí)競(jìng)賽,求選取的2人中有1人為“優(yōu)秀”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖中的程序框圖的算法思路來(lái)源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的”更相減損術(shù)“.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0時(shí),則輸出的i=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知雙曲線:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為雙曲線右支上一點(diǎn),若|PF1|2=8a|PF2|,則雙曲線離心率的取值范圍是(  )
A.(1,3]B.[3,+∞)C.(0,3)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=cos(ωx-$\frac{ωπ}{6}$)(ω>0)的最小正周期為π,則函數(shù)f(x)的圖象(  )
A.可由函數(shù)g(x)=cos2x的圖象向左平移$\frac{π}{3}$個(gè)單位而得
B.可由函數(shù)g(x)=cos2x的圖象向右平移$\frac{π}{3}$個(gè)單位而得
C.可由函數(shù)g(x)=cos2x的圖象向左平移$\frac{π}{6}$個(gè)單位而得
D.可由函數(shù)g(x)=cos2x的圖象向右平移$\frac{π}{6}$個(gè)單位而得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=2x-\frac{a}{x}$,且f(1)=3
(1)求a的值;
(2)判斷函數(shù)的奇偶性;
(3)證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案