A. | f(2)>e2f(0),f(2 017>e2017f(0) | B. | f(2)>e2f(0),f(2 017)<e2017f(0) | ||
C. | f(2)<e2f(0),f(2 017)>e2017f(0) | D. | f(2)<e2f(0),f(2 017)<e2017f(0) |
分析 對(duì)f(x)求導(dǎo),利用f'(x)<f(x)得到單調(diào)性,利用單調(diào)性求2與0以及2017與0的函數(shù)值的大。
解答 解:F'(x)=[$\frac{f(x)}{e^x}$]'=$\frac{f'(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}=\frac{f'(x)-f(x)}{{e}^{x}}$,因?yàn)閒'(x)<f(x),
所以F'(x)<0,所以F(x)為減函數(shù),
因?yàn)?>0,2017>0,
所以F(2)<F(0),F(xiàn)(2017)<F(0),
即$\frac{f(2)}{{e}^{2}}<\frac{f(0)}{{e}^{0}}$,所以f(2)<e2f(0);
$\frac{f(2017)}{{e}^{2017}}<\frac{f(0)}{{e}^{0}}$,即f(2017)<e2017f(0);
故選D.
點(diǎn)評(píng) 本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值的大小關(guān)系;關(guān)鍵是正確判斷F(x)的單調(diào)性,并正確運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 2017511 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{n-1}{n}$ | B. | $\frac{1}{n}$ | C. | $\frac{n}{n-1}$ | D. | $\frac{n+1}{n}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | [1,2) | C. | (2,5] | D. | [2,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-2,-1,1,2} | B. | {-1,1} | C. | {2} | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2π+1}{3}$ | B. | $\frac{4π+1}{3}$ | C. | $\frac{2π+3}{3}$ | D. | $\frac{2π+2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1≤x≤2} | B. | {-1,0,1,2} | C. | {-2,-1,0,1,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 它們的焦距相等 | B. | 它們的焦點(diǎn)在同一個(gè)圓上 | ||
C. | 它們的漸近線方程相同 | D. | 它們的離心率相等 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $8\sqrt{3}$ | B. | 16 | C. | 8 | D. | $4\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com