19.在數(shù)列{an}中,a1=1,an=$\frac{n-1}{n}$an-1(n≥2),則通項公式an等于( 。
A.$\frac{n-1}{n}$B.$\frac{1}{n}$C.$\frac{n}{n-1}$D.$\frac{n+1}{n}$

分析 由a1=1,an=$\frac{n-1}{n}$an-1,變形為$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n-1}{n}$,利用累乘法求解數(shù)列的通項公式即可.

解答 解:數(shù)列{an}中,a1=1,an=$\frac{n-1}{n}$an-1(n≥2),可得$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n-1}{n}$,
可得:an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}…\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n-1}{n}•\frac{n-2}{n-1}•\frac{n-3}{n-2}…\frac{1}{2}•1$=$\frac{1}{n}$,
故選:B.

點評 本題考查數(shù)列的遞推關系式的應用,數(shù)列的通項公式的求法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.化簡$\sqrt{cos2+{{sin}^2}1}$的結果是(  )
A.-cos1B.cos1C.|cos2|D.sin2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,得曲線C2的極坐標方程為ρ+6sinθ-8cosθ=0(ρ≥0).
(1)化曲線C1的參數(shù)方程為普通方程,化曲線C2的極坐標方程為直角坐標方程;
(2)直線l:$\left\{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λt}\end{array}\right.$(t為參數(shù))過曲線C1與y軸負半軸的交點,求與直線l平行且與曲線C2相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.$\underset{\stackrel{3}{∫}}{2}$(2x+1)dx( 。
A.2B.6C.10D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知向量$\overrightarrow a=(-2,1),\overrightarrow b=(3,5)$,則$\overrightarrow a-2\overrightarrow b$=( 。
A.(-4,-9)B.(-8,-9)C.(8,11)D.(-5,-6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知f(x)為R上的可導函數(shù),且對任意x∈R,均有f(x)>f′(x),則以下說法正確的是( 。
A.e2017f(-2017)<f(0),f(2017)>e2017f(0)B.e2017f(-2017)<f(0),f(2017)<e2017f(0)
C.e2017f(-2017)>f(0),f(2017)<e2017f(0)D.e2017f(-2017)>f(0),f(2017)>e2017f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在三棱錐P-ABC中,PB⊥AC,PB=9,AC=6,G為△PAC的重心,過點G作三棱錐的一個截面,使截面平行于直線PB和AC,則截面的面積為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設函數(shù)F(x)=$\frac{f(x)}{e^x}$是定義在R上的函數(shù),其中f(x)的導函數(shù)為f'(x),滿足f'(x)<f(x)對于x∈R恒成立,則(  )
A.f(2)>e2f(0),f(2 017>e2017f(0)B.f(2)>e2f(0),f(2 017)<e2017f(0)
C.f(2)<e2f(0),f(2 017)>e2017f(0)D.f(2)<e2f(0),f(2 017)<e2017f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長為2$\sqrt{2}$,且橢圓C與圓M:(x-1)2+y2=$\frac{1}{2}$的公共弦長為$\sqrt{2}$.
(1)求橢圓C的方程.
(2)經過原點作直線l(不與坐標軸重合)交橢圓于A,B兩點,AD⊥x軸于點D,點E在橢圓C上,且$({\overrightarrow{AB}-\overrightarrow{EB}})•({\overrightarrow{DB}+\overrightarrow{AD}})=0$,求證:B,D,E三點共線..

查看答案和解析>>

同步練習冊答案