18.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線方程為y=±$\frac{{\sqrt{3}}}{3}$x,左、右焦點分別為F1、F2,M為雙曲線C的一條漸近線上某一點,且∠OMF2=$\frac{π}{2},{S_{△OM{F_2}}}=8\sqrt{3}$,則雙曲線C的焦距為(  )
A.$8\sqrt{3}$B.16C.8D.$4\sqrt{3}$

分析 根據(jù)雙曲線的簡單性質(zhì)可得tan∠MOF2=$\frac{\sqrt{3}}{3}$,再根據(jù)三角形的面積公式計算即可.

解答 解:雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線方程為y=±$\frac{{\sqrt{3}}}{3}$x,左、右焦點分別為F1、F2,M為雙曲線C的一條漸近線上某一點,
∴tan∠MOF2=$\frac{\sqrt{3}}{3}$,
∴∠MOF2=$\frac{π}{6}$
∵∠OMF2=$\frac{π}{2}$,
∴OM=csin$\frac{π}{6}$=$\frac{1}{2}$c,MF2=ccos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$c,
∴${S}_{△MO{F}_{2}}$=$\frac{1}{2}$OM•MF2=$\frac{1}{2}$×$\frac{1}{2}$c×$\frac{\sqrt{3}}{2}$c=8$\sqrt{3}$,
∴c=8,
∴2c=16,
故選:B

點評 本題考查了雙曲線的簡單性質(zhì),以及三角形的面積公式,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)F(x)=$\frac{f(x)}{e^x}$是定義在R上的函數(shù),其中f(x)的導(dǎo)函數(shù)為f'(x),滿足f'(x)<f(x)對于x∈R恒成立,則( 。
A.f(2)>e2f(0),f(2 017>e2017f(0)B.f(2)>e2f(0),f(2 017)<e2017f(0)
C.f(2)<e2f(0),f(2 017)>e2017f(0)D.f(2)<e2f(0),f(2 017)<e2017f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長為2$\sqrt{2}$,且橢圓C與圓M:(x-1)2+y2=$\frac{1}{2}$的公共弦長為$\sqrt{2}$.
(1)求橢圓C的方程.
(2)經(jīng)過原點作直線l(不與坐標(biāo)軸重合)交橢圓于A,B兩點,AD⊥x軸于點D,點E在橢圓C上,且$({\overrightarrow{AB}-\overrightarrow{EB}})•({\overrightarrow{DB}+\overrightarrow{AD}})=0$,求證:B,D,E三點共線..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且2sin(A-B)=asinA-bsinB,a≠b,則c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知全集U=R,集合M=$\left\{{x|{{({\frac{1}{3}})}^x}≤1}\right\},N=\left\{{x|-1<x<4}\right\}$,則M∩N=(  )
A.{x|-1<x≤0}B.{x|0≤x<4}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,以A、B、C、D、E為頂點的六面體中,△ABC和△ABD均為等邊三角形,且平面ABC⊥平面ABD,EC⊥平面ABC,EC=$\sqrt{3}$,AB=2.
(1)求證:DE⊥平面ABD;
(2)求二面角D-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,在棱長為4的正方體ABCD-A1B1C1D1中,E、F分別是AB、DD1的中點,點P是DD1上一點,且PB∥平面CEF,則四棱錐P-ABCD外接球的表面積為41π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sinωx-$\frac{1}{2}$cosωx(ω>0),將函數(shù)y=|f(x)|的圖象向左平移$\frac{π}{9}$個單位長度后關(guān)于y軸對稱,則當(dāng)ω取最小值時,g(x)=cos(ωx+$\frac{π}{4}$)的單調(diào)遞減區(qū)間為(  )
A.[-$\frac{π}{3}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈Z)B.[-$\frac{π}{3}$+$\frac{4kπ}{3}$,$\frac{π}{2}$+$\frac{4kπ}{3}$](k∈Z)
C.[-$\frac{π}{6}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈Z)D.[-$\frac{π}{6}$+$\frac{4kπ}{3}$,$\frac{π}{2}$+$\frac{4kπ}{3}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A、B、C的對邊分別為a、b、c,已知2cos(B-C)-1=4cosBcosC.
(1)求A;
(2)若a=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求b+c.

查看答案和解析>>

同步練習(xí)冊答案