已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
anan+1
,n∈N*,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)設(shè)An=(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)•…•(1+
1
an
),n∈N*,試比較An
an+1
的大小,并證明你的結(jié)論.
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-1,當(dāng)n=1時(shí),a1=S1=1,即可得出.
(2)bn=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用“裂項(xiàng)求和”即可得出數(shù)列{bn}的前n項(xiàng)和Tn
(3)利用1+
1
an
=1+
1
2n-1
=
2n-1+2n+1
2(2n-1)
(2n-1)(2n+1)
2n-1
=
2n+1
2n-1
,即可得出An
an+1
解答: 解:(1)當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-(n-1)2=2n-1,
當(dāng)n=1時(shí),a1=S1=1,上式也成立,
∴an=2n-1.
(2)bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,
∴數(shù)列{bn}的前n項(xiàng)和Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1

(3)∵1+
1
an
=1+
1
2n-1
=
2n
2n-1
=
2n-1+2n+1
2(2n-1)
(2n-1)(2n+1)
2n-1
=
2n+1
2n-1
,
∴An
3
1
×
5
3
×
7
5
×…×
2n+1
2n-1
=
2n+1
=
an+1

∴An
an+1
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用、“裂項(xiàng)求和”、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖為甲,乙兩名學(xué)生7次考試成績的莖葉圖(其中m為數(shù)字0~9中的一個(gè)),去掉一個(gè)最高分和一個(gè)最低分后,甲、乙考試成績的平均數(shù)分別為a和b,則一定有( 。
A、a>b
B、a<b
C、a=b
D、a,b的大小與m的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓γ:
x2
4
+y2
=1的右焦點(diǎn)為F,左頂點(diǎn)為R,點(diǎn)A(2,1),B(-2,1),O為坐標(biāo)原點(diǎn).
(1)若P是橢圓γ上任意一點(diǎn),
OP
=m
OA
+n
OB
,求m2+n2的值;
(2)設(shè)Q是橢圓γ上任意一點(diǎn),S(t,0),t∈(2,5),求
QS
QR
的取值范圍;
(3)過F作斜率為k的直線l交橢圓γ于C,D兩點(diǎn),交y軸于點(diǎn)E,若
EC
=λ1
CF
,
ED
=λ2
DF
,試探究λ12是否為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于大或等于2的正整數(shù)m的n次方冪有如下分解方式:

根據(jù)上述分解規(guī)律.若m3(m∈N*)的分解中最小的數(shù)是91,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b
,
c
滿足
a
+
b
+
c
=
0
,且
a
b
=0
,則|
a
|=3,|
c
|=4
,則|
b
|
=( 。
A、5
B、
7
C、
5
D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義在R上的奇函數(shù)且y=f(x+1)也是奇函數(shù),若f(3)=0,則函數(shù)y=f(x)在區(qū)間(0,8)內(nèi)的零點(diǎn)個(gè)數(shù)至少有( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),且當(dāng)x>2時(shí),f(x)單調(diào)遞增,如果x1+x2<4,且(x1-2)(x2-2)<0,則下列說法正確的是( 。
A、f(x1)+f(x2)的值為正數(shù)
B、f(x1)+f(x2)的值為負(fù)數(shù)
C、f(x1)+f(x2)的值正負(fù)不能確定
D、f(x1)+f(x2)的值一定為零

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線的左焦點(diǎn)F1且與雙曲線的實(shí)軸垂直的直線交雙曲線于A,B兩點(diǎn),若在雙曲線虛軸所在直線上存在一點(diǎn)C,使
AC
BC
=0,則雙曲線離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果實(shí)數(shù)x、y滿足條件
x-y+1≥0
y+1≥0
x+y+1≤0
,那么z=4x•2-y的最大值為(  )
A、1
B、2
C、
1
2
D、
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案