12.過(guò)拋物線y2=4x的焦點(diǎn)F作互相垂直的弦AC,BD,則點(diǎn)A,B,C,D所構(gòu)成四邊形的面積的最小值為(  )
A.16B.32C.48D.64

分析 設(shè)直線AB的方程為y=k(x-1),由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,消去y得k2x2-(2k2+4)x+k2=0,由弦長(zhǎng)公式得|AB|,以-$\frac{1}{k}$換k得|CD|,故所求面積為S=$\frac{1}{2}$|AB||CD|=8(${k}^{2}+\frac{1}{{k}^{2}}$+2)即可求最值.

解答 解:設(shè)直線AB的斜率為k(k≠0),則直線CD的斜率為-$\frac{1}{k}$,
直線AB的方程為y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,消去y得k2x2-(2k2+4)x+k2=0,
${x}_{1}+{x}_{2}=\frac{{2k}^{2}+4}{{k}^{2}},{x}_{1}{x}_{2}=1$,
由弦長(zhǎng)公式得|AB|=$\sqrt{1+{k}^{2}}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{1+{k}^{2}}}{{k}^{2}}$×$\sqrt{1+{k}^{2}}$=$\frac{4(1+{k}^{2})}{{k}^{2}}$,
以-$\frac{1}{k}$換k得|CD|=4k2+4,
∵AB、CD互相垂直
故所求面積為S=$\frac{1}{2}$|AB||CD|=8(${k}^{2}+\frac{1}{{k}^{2}}$+2)≥8(2$\sqrt{{k}^{2}•\frac{1}{{k}^{2}}}+2$)≥32(當(dāng)k2=1時(shí)取等號(hào)),
即面積的最小值為32.故選:B

點(diǎn)評(píng) 題考查拋物線方程的求法,考查四邊形面積的最小值的求法,考查弦長(zhǎng)的表達(dá)式的求法,解題時(shí)要認(rèn)真審題,注意弦長(zhǎng)公式的靈活運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,向量$\overrightarrow m=({\frac{a}{2},\frac{c}{2}}),\overrightarrow n=({cosC,cosA})$,且$\overrightarrow n•\overrightarrow m=bcosB$則B的值是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若sinθ,cosθ是方程4x2+2mx+m=0的兩根,則m的值為( 。
A..$1+\sqrt{5}$B..$1-\sqrt{5}$C.$.1±\sqrt{5}$D..$-1-\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下面使用類比推理正確的是(  )
A.“若a•3=b•3,則a=b”類比推出“若$\overrightarrow{a}•0=\overrightarrow•0$,則$\overrightarrow a=\overrightarrow b$”
B.“(a+b)c=ac+bc”類比推出“$({\overrightarrow a•\overrightarrow b})\overrightarrow c=\overrightarrow a\overrightarrow c•\overrightarrow b\overrightarrow c$”
C.“(a+b)c=ac+bc”類比推出“$({\overrightarrow a+\overrightarrow b})•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$”
D.“(ab)n=anbn”類比推出“($\overrightarrow{a}$+$\overrightarrow$)n=$\overrightarrow{a}$n+$\overrightarrow$n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知i是虛數(shù)單位,且復(fù)數(shù)z1=3-bi,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$是實(shí)數(shù),則實(shí)數(shù)b的值為( 。
A.6B.-6C.0D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若數(shù)列{an}滿足${a_n}=\frac{{{a_{n-1}}}}{{{a_{n-2}}}}(n∈{N^*}n≥3){a_1}=2,{a_2}=\frac{1}{3}$,則a2016等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.我們知道平方運(yùn)算和開(kāi)方運(yùn)算是互逆運(yùn)算,如:a2±2ab+b2=(a±b)2,那么$\sqrt{{a}^{2}±2ab+^{2}}$=|a±b|,那么如何將雙重二次根式$\sqrt{a±2\sqrt}$(a>0,b>0,a±2$\sqrt$>0)化簡(jiǎn)呢?如能找到兩個(gè)數(shù)m,n(m>0,n>0),使得($\sqrt{m}$)2+($\sqrt{n}$)2=a即m+n=a,且使$\sqrt{m}$•$\sqrt{n}$=$\sqrt$即m•n=b,那么a±2$\sqrt$=(($\sqrt{m}$)2+($\sqrt{n}$)2±2$\sqrt{m}•\sqrt{n}$=($\sqrt{m}±\sqrt{n}$)2
∴$\sqrt{a±2\sqrt}$=|$\sqrt{m}±\sqrt{n}$|,雙重二次根式得以化簡(jiǎn);例如化簡(jiǎn):$\sqrt{3+2\sqrt{2}}$; Q3=1+2且2=1×2,
∴3+2$\sqrt{2}$=($\sqrt{1}$)2+($\sqrt{2}$)2+2$\sqrt{1}$×$\sqrt{2}$
∴$\sqrt{3+2\sqrt{2}}$=1+$\sqrt{2}$.
由此對(duì)于任意一個(gè)二次根式只要可以將其化成$\sqrt{a±2\sqrt}$的形式,且能找到m,n(m>0,n>0)使得m+n=a,且m•n=b,那么這個(gè)雙重二次根式一定可以化簡(jiǎn)為一個(gè)二次根式.請(qǐng)同學(xué)們通過(guò)閱讀上述材料,完成下列問(wèn)題:
(1)填空:$\sqrt{5-2\sqrt{6}}$=$\sqrt{3}$-$\sqrt{2}$;$\sqrt{12+2\sqrt{35}}$=$\sqrt{7}$+$\sqrt{5}$;   
(2)化簡(jiǎn):
①$\sqrt{9+6\sqrt{2}}$;               
 ②$\sqrt{16-4\sqrt{15}}$;
(3)計(jì)算:$\sqrt{3-\sqrt{5}}$+$\sqrt{2+\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知${log_2}({16-{2^x}})=x$,求x的值
(2)計(jì)算:${({-\frac{1}{{\sqrt{5}-\sqrt{3}}}})^0}+{81^{0.75}}-\sqrt{{{({-3})}^2}}×{8^{\frac{2}{3}}}+{log_5}7•{log_7}25$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=tan(2x+$\frac{π}{4}$)的單調(diào)遞增區(qū)間是($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),k∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案